Operator approach to quantization of semigroups
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 319-342

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the construction of compact quantum semigroups from semigroup $C^*$-algebras generated by the ‘deformation’ of algebras of continuous functions on compact Abelian groups. The dual space of such a $C^*$-algebra is endowed with the structure of a Banach *-algebra containing the algebra of measures on a compact group. We construct a weak Hopf *-algebra that is dense in such a compact quantum semigroup. We show that there exists an injective functor from the constructed category of compact quantum semigroups into the category of Abelian semigroups. Bibliography: 25 titles.
Keywords: $C^*$-algebra, compact quantum semigroup, Haar functional, Toeplitz algebra, isometric representation.
@article{SM_2014_205_3_a1,
     author = {M. A. Aukhadiev and S. A. Grigoryan and E. V. Lipacheva},
     title = {Operator approach to quantization of semigroups},
     journal = {Sbornik. Mathematics},
     pages = {319--342},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a1/}
}
TY  - JOUR
AU  - M. A. Aukhadiev
AU  - S. A. Grigoryan
AU  - E. V. Lipacheva
TI  - Operator approach to quantization of semigroups
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 319
EP  - 342
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a1/
LA  - en
ID  - SM_2014_205_3_a1
ER  - 
%0 Journal Article
%A M. A. Aukhadiev
%A S. A. Grigoryan
%A E. V. Lipacheva
%T Operator approach to quantization of semigroups
%J Sbornik. Mathematics
%D 2014
%P 319-342
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a1/
%G en
%F SM_2014_205_3_a1
M. A. Aukhadiev; S. A. Grigoryan; E. V. Lipacheva. Operator approach to quantization of semigroups. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 319-342. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a1/