Operator approach to quantization of semigroups
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 319-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the construction of compact quantum semigroups from semigroup $C^*$-algebras generated by the ‘deformation’ of algebras of continuous functions on compact Abelian groups. The dual space of such a $C^*$-algebra is endowed with the structure of a Banach *-algebra containing the algebra of measures on a compact group. We construct a weak Hopf *-algebra that is dense in such a compact quantum semigroup. We show that there exists an injective functor from the constructed category of compact quantum semigroups into the category of Abelian semigroups. Bibliography: 25 titles.
Keywords: $C^*$-algebra, compact quantum semigroup, Haar functional, Toeplitz algebra, isometric representation.
@article{SM_2014_205_3_a1,
     author = {M. A. Aukhadiev and S. A. Grigoryan and E. V. Lipacheva},
     title = {Operator approach to quantization of semigroups},
     journal = {Sbornik. Mathematics},
     pages = {319--342},
     year = {2014},
     volume = {205},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a1/}
}
TY  - JOUR
AU  - M. A. Aukhadiev
AU  - S. A. Grigoryan
AU  - E. V. Lipacheva
TI  - Operator approach to quantization of semigroups
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 319
EP  - 342
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a1/
LA  - en
ID  - SM_2014_205_3_a1
ER  - 
%0 Journal Article
%A M. A. Aukhadiev
%A S. A. Grigoryan
%A E. V. Lipacheva
%T Operator approach to quantization of semigroups
%J Sbornik. Mathematics
%D 2014
%P 319-342
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a1/
%G en
%F SM_2014_205_3_a1
M. A. Aukhadiev; S. A. Grigoryan; E. V. Lipacheva. Operator approach to quantization of semigroups. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 319-342. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a1/

[1] V. G. Drinfeld, “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauchn. sem. LOMI, 155, Izd-vo “Nauka”, Leningrad. otd., L., 1986, 18–49 ; V. G. Drinfel'd, “Quantum groups”, J. Soviet Math., 41:2 (1988), 898–915 ; Proceedings of the International congress of mathematicians, Berkeley, Calif., 1986, v. 1, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR | Zbl | DOI | MR | Zbl

[2] S. L. Woronowicz, “Twisted $\operatorname{SU}(2)$-group. An example of a non-commutative differential calculus”, Publ. Res. Inst. Math. Sci., 23:1 (1987), 117–181 | DOI | MR | Zbl

[3] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1:1 (1990), 193–225 | MR | Zbl

[4] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990, x+286 pp. | MR | Zbl

[5] S. L. Woronowicz, “Unbounded elements affiliated with $C^*$-algebras and non-compact quantum groups”, Comm. Math. Phys., 1991, no. 136, 399–432 | DOI | MR | Zbl

[6] A. Maes, A. Van Daele, “Notes on compact quantum groups”, Nieuw Arch. Wisk. (4), 16:1-2 (1998), 73–112 | MR | Zbl

[7] S. L. Woronowicz, “Compact quantum groups”, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl

[8] S. L. Woronowicz, “Compact matrix pseudogroups”, Comm. Math. Phys., 111:4 (1987), 613–665 | DOI | MR | Zbl

[9] S. Vaes, A. Van Daele, “Hopf $C^*$-algebras”, Proc. London Math. Soc. (3), 82:2 (2001), 337–384 | DOI | MR | Zbl

[10] P. Podlés, “Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $\operatorname{SU}(2)$ and $\operatorname{SO}(3)$ groups”, Comm. Math. Phys., 1995, no. 170, 1–20 | DOI | MR | Zbl

[11] K. Kassel, Kvantovye gruppy, Grad. Texts in Math., 155, Fazis, M., 1999, xxi+663 per. s angl.: pp. | DOI | MR | Zbl

[12] K. Kawamura, “$C^*$-bialgebra defined by the direct sum of Cuntz algebras”, J. Algebra, 2008, no. 319, 3935–3959 | DOI | MR | Zbl

[13] M. A. Aukhadiev, S. A. Grigoryan, E. V. Lipacheva, “On compact quantum semigroup $QS_\mathrm{red}$”, Russian Math. (Iz. VUZ), 57:10 (2013), 54–58 | DOI | Zbl

[14] L. A. Coburn, “The $C^*$-algebra generated by an isometry”, Bull. Amer. Math. Soc., 73:5 (1967), 722–726 | DOI | MR | Zbl

[15] R. G. Douglas, “On the $C^*$-algebra of a one-parameter semigroup of isometries”, Acta Math., 128:1 (1972), 143–151 | DOI | MR | Zbl

[16] G. J. Murphy, “Ordered groups and Toeplitz algebras”, J. Operator Theory, 18:2 (1987), 303–326 | MR | Zbl

[17] M. A. Aukhadiev, V. H. Tepoyan, “Isometric representations of totally ordered semigroups”, Lobachevskii J. Math., 33:3 (2012), 239–243 | DOI | MR | Zbl

[18] S. A. Grigoryan, A. F. Salakhutdinov, “$C^*$-algebras generated by cancellative semigroups”, Siberian Math. J., 51:1 (2010), 12–19 | DOI | MR | Zbl

[19] S. A. Grigoryan, A. F. Salakhutdinov, “$C^*$-algebras generated by semigroups”, Russian Math. (Iz. VUZ), 53:10 (2009), 61–63 | DOI | MR | Zbl

[20] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, v. 1, Texts Monogr. Phys., $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, Springer-Verlag, New York–Heidelberg–Berlin, 1979, xii+500 pp. | MR | MR | Zbl | Zbl

[21] S. Duplij, Fang Li, “Regular solutions of quantum Yang–Baxter equation from weak Hopf algebras”, presented at the 10th International colloquium “Quantum groups and integrable systems” (Prague, 2001), Czechoslovak J. Phys., 51:12 (2001), 1306–1311 | DOI | MR | Zbl

[22] Fang Li, S. Duplij, “Weak Hopf algebras and singular solutions of quantum Yang–Baxter equation”, Comm. Math. Phys., 225:1 (2002), 191–217 | DOI | MR | Zbl

[23] A. M. Vershik, “Krein duality, positive 2-algebras, and dilation of comultiplications”, Funct. Anal. Appl., 41:2 (2007), 99–114 | DOI | DOI | MR | Zbl

[24] C. Pinzari, “Embedding ergodic actions of compact quantum groups on $C^*$-algebras into quotient spaces”, Internat. J. Math., 18:2 (2007), 137–164 | DOI | MR | Zbl

[25] M. A. Aukhadiev, S. A. Grigoryan, E. V. Lipacheva, “Infinite-dimensional compact quantum semigroup”, Lobachevskii J. Math., 32:4 (2011), 304–316 | DOI | MR | Zbl