Existence and uniqueness theorems for solutions of parabolic equations with a~variable nonlinearity exponent
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 307-318

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the solvability of the initial-boundary value problem for second-order parabolic equations with variable nonlinearity exponents. In the model case, this equation contains the $p$-Laplacian with a variable exponent $p(x,t)$. The problem is shown to be uniquely solvable, provided the exponent $p$ is bounded away from both $1$ and $\infty$ and is log-Hölder continuous, and its solution satisfies the energy equality. Bibliography: 18 titles.
Keywords: variable nonlinearity exponent, log-Hölder continuity.
Mots-clés : parabolic equation
@article{SM_2014_205_3_a0,
     author = {Yu. A. Alkhutov and V. V. Zhikov},
     title = {Existence and uniqueness theorems for solutions of parabolic equations with a~variable nonlinearity exponent},
     journal = {Sbornik. Mathematics},
     pages = {307--318},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - V. V. Zhikov
TI  - Existence and uniqueness theorems for solutions of parabolic equations with a~variable nonlinearity exponent
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 307
EP  - 318
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/
LA  - en
ID  - SM_2014_205_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A V. V. Zhikov
%T Existence and uniqueness theorems for solutions of parabolic equations with a~variable nonlinearity exponent
%J Sbornik. Mathematics
%D 2014
%P 307-318
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/
%G en
%F SM_2014_205_3_a0
Yu. A. Alkhutov; V. V. Zhikov. Existence and uniqueness theorems for solutions of parabolic equations with a~variable nonlinearity exponent. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 307-318. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/