Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent
Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 307-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the solvability of the initial-boundary value problem for second-order parabolic equations with variable nonlinearity exponents. In the model case, this equation contains the $p$-Laplacian with a variable exponent $p(x,t)$. The problem is shown to be uniquely solvable, provided the exponent $p$ is bounded away from both $1$ and $\infty$ and is log-Hölder continuous, and its solution satisfies the energy equality. Bibliography: 18 titles.
Keywords: variable nonlinearity exponent
Mots-clés : parabolic equation, log-Hölder continuity.
@article{SM_2014_205_3_a0,
     author = {Yu. A. Alkhutov and V. V. Zhikov},
     title = {Existence and uniqueness theorems for solutions of parabolic equations with a~variable nonlinearity exponent},
     journal = {Sbornik. Mathematics},
     pages = {307--318},
     year = {2014},
     volume = {205},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - V. V. Zhikov
TI  - Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 307
EP  - 318
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/
LA  - en
ID  - SM_2014_205_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A V. V. Zhikov
%T Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent
%J Sbornik. Mathematics
%D 2014
%P 307-318
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/
%G en
%F SM_2014_205_3_a0
Yu. A. Alkhutov; V. V. Zhikov. Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 307-318. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/

[1] V. V. Zhikov, “On Lavrentiev's phenomenon”, Russian J. Math. Phys., 3:2 (1994), 249–269 | MR | Zbl

[2] V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl

[3] X. Fan, A class of De Giorgi type and Hölder continuity of minimizers of variational integrals with $m(x)$-growth condition, preprint, Lanzhou Univ., Lanzhou, China, 1995

[4] Yu. A. Alkhutov, “The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition”, Differential Equations, 33:12 (1997), 1653–1663 | MR | Zbl

[5] O. V. Krasheninnikova, “Continuity at a point for solutions to elliptic equations with a nonstandard growth condition”, Proc. Steklov Inst. Math., 236 (2002), 193–200 | MR | Zbl

[6] E. Acerbi, G. Mingione, “Regularity results for a class of functionals with non-standard growth”, Arch. Ration. Mech. Anal., 156:2 (2001), 121–140 | DOI | MR | Zbl

[7] Yu. A. Alkhutov, O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition”, Izv. Math., 68:6 (2004), 1063–1117 | DOI | DOI | MR | Zbl

[8] M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math., 1748, Berlin, 2000, xvi+176 pp. | DOI | MR | Zbl

[9] E. DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993, xvi+387 pp. | DOI | MR | Zbl

[10] E. DiBenedetto, M. J. Urbano, V. Vespri, Current issues on singular and degenerate evolution equations, preprint no. 03-24, Pré-Publicações do Departamento de Matemática Universidade de Coimbra, 2003, 119 pp.; Evolutionary equations, v. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, 169–286 | MR | Zbl

[11] S. N. Antontsev, V. V. Zhikov, “Hihger integrability for parabolic equations of $p(x,t)$-Laplacian type”, Adv. Differential Equations, 10:9 (2005), 1053–1080 | MR | Zbl

[12] V. V. Zhikov, S. E. Pastukhova, “On the property of higher integrability for parabolic systems of variable order of nonlinearity”, Math. Notes, 87:2 (2010), 169–188 | DOI | DOI | MR | Zbl

[13] E. Acerbi, G. Mingione, G. A. Seregin, “Regularity results for parabolic systems related to a class of non-Newtonian fluids”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21:1 (2004), 25–60 | DOI | MR | Zbl

[14] Yu. A. Alkhutov, V. V. Zhikov, “Existence theorems and qualitative properties of solutions to parabolic equations with a variable order of nonlinearity”, Dokl. Math., 81:1 (2010), 34–38 | DOI | MR | Zbl

[15] Yu. A. Alkhutov, V. V. Zhikov, “Existence theorems for solutions of parabolic equations with variable order of nonlinearity”, Proc. Steklov Inst. Math., 270:1 (2010), 15–26 | DOI | MR | Zbl

[16] Yu. A. Alkhutov, S. N. Antontsev, V. V. Zhikov, “Parabolicheskie uravneniya s peremennym poryadkom nelineinosti”, Zbirnik prats Inct. matem. NAN Ukr., 6:1 (2009), 23–50

[17] L. Diening, P. Nägele, M. Růžička, “Monotone operator theory for unsteady problems in variable exponent spaces”, Complex Var. Elliptic Equ., 57:11 (2012), 1209–1231 | DOI | MR | Zbl

[18] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl