Mots-clés : parabolic equation, log-Hölder continuity.
@article{SM_2014_205_3_a0,
author = {Yu. A. Alkhutov and V. V. Zhikov},
title = {Existence and uniqueness theorems for solutions of parabolic equations with a~variable nonlinearity exponent},
journal = {Sbornik. Mathematics},
pages = {307--318},
year = {2014},
volume = {205},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/}
}
TY - JOUR AU - Yu. A. Alkhutov AU - V. V. Zhikov TI - Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent JO - Sbornik. Mathematics PY - 2014 SP - 307 EP - 318 VL - 205 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/ LA - en ID - SM_2014_205_3_a0 ER -
Yu. A. Alkhutov; V. V. Zhikov. Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent. Sbornik. Mathematics, Tome 205 (2014) no. 3, pp. 307-318. http://geodesic.mathdoc.fr/item/SM_2014_205_3_a0/
[1] V. V. Zhikov, “On Lavrentiev's phenomenon”, Russian J. Math. Phys., 3:2 (1994), 249–269 | MR | Zbl
[2] V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl
[3] X. Fan, A class of De Giorgi type and Hölder continuity of minimizers of variational integrals with $m(x)$-growth condition, preprint, Lanzhou Univ., Lanzhou, China, 1995
[4] Yu. A. Alkhutov, “The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition”, Differential Equations, 33:12 (1997), 1653–1663 | MR | Zbl
[5] O. V. Krasheninnikova, “Continuity at a point for solutions to elliptic equations with a nonstandard growth condition”, Proc. Steklov Inst. Math., 236 (2002), 193–200 | MR | Zbl
[6] E. Acerbi, G. Mingione, “Regularity results for a class of functionals with non-standard growth”, Arch. Ration. Mech. Anal., 156:2 (2001), 121–140 | DOI | MR | Zbl
[7] Yu. A. Alkhutov, O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition”, Izv. Math., 68:6 (2004), 1063–1117 | DOI | DOI | MR | Zbl
[8] M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math., 1748, Berlin, 2000, xvi+176 pp. | DOI | MR | Zbl
[9] E. DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993, xvi+387 pp. | DOI | MR | Zbl
[10] E. DiBenedetto, M. J. Urbano, V. Vespri, Current issues on singular and degenerate evolution equations, preprint no. 03-24, Pré-Publicações do Departamento de Matemática Universidade de Coimbra, 2003, 119 pp.; Evolutionary equations, v. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, 169–286 | MR | Zbl
[11] S. N. Antontsev, V. V. Zhikov, “Hihger integrability for parabolic equations of $p(x,t)$-Laplacian type”, Adv. Differential Equations, 10:9 (2005), 1053–1080 | MR | Zbl
[12] V. V. Zhikov, S. E. Pastukhova, “On the property of higher integrability for parabolic systems of variable order of nonlinearity”, Math. Notes, 87:2 (2010), 169–188 | DOI | DOI | MR | Zbl
[13] E. Acerbi, G. Mingione, G. A. Seregin, “Regularity results for parabolic systems related to a class of non-Newtonian fluids”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21:1 (2004), 25–60 | DOI | MR | Zbl
[14] Yu. A. Alkhutov, V. V. Zhikov, “Existence theorems and qualitative properties of solutions to parabolic equations with a variable order of nonlinearity”, Dokl. Math., 81:1 (2010), 34–38 | DOI | MR | Zbl
[15] Yu. A. Alkhutov, V. V. Zhikov, “Existence theorems for solutions of parabolic equations with variable order of nonlinearity”, Proc. Steklov Inst. Math., 270:1 (2010), 15–26 | DOI | MR | Zbl
[16] Yu. A. Alkhutov, S. N. Antontsev, V. V. Zhikov, “Parabolicheskie uravneniya s peremennym poryadkom nelineinosti”, Zbirnik prats Inct. matem. NAN Ukr., 6:1 (2009), 23–50
[17] L. Diening, P. Nägele, M. Růžička, “Monotone operator theory for unsteady problems in variable exponent spaces”, Complex Var. Elliptic Equ., 57:11 (2012), 1209–1231 | DOI | MR | Zbl
[18] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl