Mots-clés : variable-exponent Lebesgue and Sobolev spaces
@article{SM_2014_205_2_a6,
author = {I. I. Sharapudinov},
title = {Approximation of functions in variable-exponent {Lebesgue} and {Sobolev} spaces by finite {Fourier-Haar} series},
journal = {Sbornik. Mathematics},
pages = {291--306},
year = {2014},
volume = {205},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/}
}
TY - JOUR AU - I. I. Sharapudinov TI - Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series JO - Sbornik. Mathematics PY - 2014 SP - 291 EP - 306 VL - 205 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/ LA - en ID - SM_2014_205_2_a6 ER -
I. I. Sharapudinov. Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 291-306. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/
[1] I. I. Sharapudinov, “O bazisnosti sistemy Khaara v prostranstve $\mathscr L^{p(t)}([0,1])$ i printsipe lokalizatsii v srednem”, Matem. sb., 130(172):2(6) (1986), 275–283 ; I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287 | MR | Zbl | DOI
[2] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Berlin, Heidelberg, 2011, x+509 pp. | DOI | MR | Zbl
[3] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matem. monografiya, 5, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 267 pp.
[4] I. I. Sharapudinov, “O topologii prostranstva $\mathscr L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl
[5] I. I. Sharapudinov, “Priblizhenie funktsii v $L^{p(x)}_{2\pi}$ trigonometricheskimi polinomami”, Izv. RAN. Ser. matem., 77:2 (2013), 197–224 | DOI | MR | Zbl
[6] I. I. Sharapudinov, “O ravnomernoi ogranichennosti v $L^p$ ($p=p(x)$) nekotorykh semeistv operatorov svertki”, Matem. zametki, 59:2 (1996), 291–302 | DOI | MR | Zbl
[7] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}(E)$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR
[8] I. I. Sharapudinov, “Approksimativnye svoistva srednikh Valle–Pussena na klassakh tipa Soboleva s peremennym pokazatelem”, Vestnik Dagestanskogo nauchnogo tsentra RAN, 2012, no. 45, 5–13
[9] I. I. Sharapudinov, “Priblizhenie gladkikh funktsii v $L_{2\pi}^{p(x)}$ srednimi Valle–Pussena”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1(1) (2013), 45–49
[10] A. Guven, D. M. Israfilov, “Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl
[11] R. Akgün, “Polynomial approximation of function in weighted Lebesgue and Smirnov spaces whith nonstandard growth”, Georgian Math. J., 18:2 (2011), 203–235 | MR | Zbl
[12] R. Akgün, “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent”, Ukrainian Math. J., 63:1 (2011), 1–26 | DOI | MR | Zbl
[13] R. Akgün, V. Kokilashvili, “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces”, Banach J. Math. Anal., 5:1 (2011), 70–82 | MR | Zbl
[14] C. O. Chaichenko, “Nailuchshee priblizhenie periodicheskikh funktsii v obobschennykh prostranstvakh Lebega”, Ukr. matem. zhurn., 64:9 (2012), 1249–1265 ; S. O. Chaichenko, “Best approximations of periodic functions in generalized Lebesgue spaces”, Ukrainian Math. J., 64:9 (2013), 1421–1439 | Zbl | DOI | MR
[15] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., AFTs, M., 1999, x+550 pp. ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | Zbl | MR
[16] I. M. Sobol, Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969, 288 pp. | MR
[17] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl