Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 291-306
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper deals with the space $L^{p(x)}$ consisting of classes of real measurable functions $f(x)$ on $[0,1]$ with finite integral $\displaystyle\int_0^1|f(x)|^{p(x)}\,dx$. If $1\le p(x)\le \overline p\infty$, then the space $L^{p(x)}$ can be made into a Banach space with the norm $\displaystyle\|f\|_{p(\cdot)}=\inf\biggl\{\alpha\,{>}\,0: \int_0^1 |{f(x)/\alpha}|^{p(x)}\,dx\le\nobreak 1\biggr\}$. The inequality $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)\Omega(f,1/n)_{p(\cdot)}$, which is an analogue of the first Jackson theorem, is shown to hold for the finite Fourier-Haar series $Q_n(f)$, provided that the variable exponent $p(x)$ satisfies the condition $|p(x)-p(y)|\ln(1/|x-y|)\le\nobreak c$. Here, $\Omega(f,\delta)_{p(\cdot)}$ is the modulus of continuity in $L^{p(x)}$
defined in terms of Steklov functions. If the function $f(x)$ lies in the Sobolev space $W_{p(\cdot)}^1$
with variable exponent $p(x)$, it is shown that $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)/n\|f'\|_{p(\cdot)}$.
Methods for estimating the deviation $|f(x)-Q_n(f,x)|$ for $f(x) \in W_{p(\cdot)}^1$ at a given point $x \in [0,1]$ are also examined. The value of $\sup_{f\in W_{p}^1(1) }|f(x)-Q_n(f,x)|$ is calculated in the case
when $p(x) \equiv p = \nobreak \mathrm{const}$, where $W_{p}^1(1)=\{f\in W_{p}^1:\|f'\|_{p(\cdot)}\le1\}$.
Bibliography: 17 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
approximation of functions by Fourier-Haar series.
Mots-clés : variable-exponent Lebesgue and Sobolev spaces
                    
                  
                
                
                Mots-clés : variable-exponent Lebesgue and Sobolev spaces
@article{SM_2014_205_2_a6,
     author = {I. I. Sharapudinov},
     title = {Approximation of functions in variable-exponent {Lebesgue} and {Sobolev} spaces by finite {Fourier-Haar} series},
     journal = {Sbornik. Mathematics},
     pages = {291--306},
     publisher = {mathdoc},
     volume = {205},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/}
}
                      
                      
                    TY - JOUR AU - I. I. Sharapudinov TI - Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series JO - Sbornik. Mathematics PY - 2014 SP - 291 EP - 306 VL - 205 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/ LA - en ID - SM_2014_205_2_a6 ER -
I. I. Sharapudinov. Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 291-306. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/
