Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 291-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the space $L^{p(x)}$ consisting of classes of real measurable functions $f(x)$ on $[0,1]$ with finite integral $\displaystyle\int_0^1|f(x)|^{p(x)}\,dx$. If $1\le p(x)\le \overline p<\infty$, then the space $L^{p(x)}$ can be made into a Banach space with the norm $\displaystyle\|f\|_{p(\cdot)}=\inf\biggl\{\alpha\,{>}\,0: \int_0^1 |{f(x)/\alpha}|^{p(x)}\,dx\le\nobreak 1\biggr\}$. The inequality $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)\Omega(f,1/n)_{p(\cdot)}$, which is an analogue of the first Jackson theorem, is shown to hold for the finite Fourier-Haar series $Q_n(f)$, provided that the variable exponent $p(x)$ satisfies the condition $|p(x)-p(y)|\ln(1/|x-y|)\le\nobreak c$. Here, $\Omega(f,\delta)_{p(\cdot)}$ is the modulus of continuity in $L^{p(x)}$ defined in terms of Steklov functions. If the function $f(x)$ lies in the Sobolev space $W_{p(\cdot)}^1$ with variable exponent $p(x)$, it is shown that $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)/n\|f'\|_{p(\cdot)}$. Methods for estimating the deviation $|f(x)-Q_n(f,x)|$ for $f(x) \in W_{p(\cdot)}^1$ at a given point $x \in [0,1]$ are also examined. The value of $\sup_{f\in W_{p}^1(1) }|f(x)-Q_n(f,x)|$ is calculated in the case when $p(x) \equiv p = \nobreak \mathrm{const}$, where $W_{p}^1(1)=\{f\in W_{p}^1:\|f'\|_{p(\cdot)}\le1\}$. Bibliography: 17 titles.
Keywords: approximation of functions by Fourier-Haar series.
Mots-clés : variable-exponent Lebesgue and Sobolev spaces
@article{SM_2014_205_2_a6,
     author = {I. I. Sharapudinov},
     title = {Approximation of functions in variable-exponent {Lebesgue} and {Sobolev} spaces by finite {Fourier-Haar} series},
     journal = {Sbornik. Mathematics},
     pages = {291--306},
     year = {2014},
     volume = {205},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 291
EP  - 306
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/
LA  - en
ID  - SM_2014_205_2_a6
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series
%J Sbornik. Mathematics
%D 2014
%P 291-306
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/
%G en
%F SM_2014_205_2_a6
I. I. Sharapudinov. Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 291-306. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a6/

[1] I. I. Sharapudinov, “O bazisnosti sistemy Khaara v prostranstve $\mathscr L^{p(t)}([0,1])$ i printsipe lokalizatsii v srednem”, Matem. sb., 130(172):2(6) (1986), 275–283 ; I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287 | MR | Zbl | DOI

[2] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Berlin, Heidelberg, 2011, x+509 pp. | DOI | MR | Zbl

[3] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matem. monografiya, 5, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 267 pp.

[4] I. I. Sharapudinov, “O topologii prostranstva $\mathscr L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[5] I. I. Sharapudinov, “Priblizhenie funktsii v $L^{p(x)}_{2\pi}$ trigonometricheskimi polinomami”, Izv. RAN. Ser. matem., 77:2 (2013), 197–224 | DOI | MR | Zbl

[6] I. I. Sharapudinov, “O ravnomernoi ogranichennosti v $L^p$ ($p=p(x)$) nekotorykh semeistv operatorov svertki”, Matem. zametki, 59:2 (1996), 291–302 | DOI | MR | Zbl

[7] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}(E)$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR

[8] I. I. Sharapudinov, “Approksimativnye svoistva srednikh Valle–Pussena na klassakh tipa Soboleva s peremennym pokazatelem”, Vestnik Dagestanskogo nauchnogo tsentra RAN, 2012, no. 45, 5–13

[9] I. I. Sharapudinov, “Priblizhenie gladkikh funktsii v $L_{2\pi}^{p(x)}$ srednimi Valle–Pussena”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1(1) (2013), 45–49

[10] A. Guven, D. M. Israfilov, “Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl

[11] R. Akgün, “Polynomial approximation of function in weighted Lebesgue and Smirnov spaces whith nonstandard growth”, Georgian Math. J., 18:2 (2011), 203–235 | MR | Zbl

[12] R. Akgün, “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent”, Ukrainian Math. J., 63:1 (2011), 1–26 | DOI | MR | Zbl

[13] R. Akgün, V. Kokilashvili, “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces”, Banach J. Math. Anal., 5:1 (2011), 70–82 | MR | Zbl

[14] C. O. Chaichenko, “Nailuchshee priblizhenie periodicheskikh funktsii v obobschennykh prostranstvakh Lebega”, Ukr. matem. zhurn., 64:9 (2012), 1249–1265 ; S. O. Chaichenko, “Best approximations of periodic functions in generalized Lebesgue spaces”, Ukrainian Math. J., 64:9 (2013), 1421–1439 | Zbl | DOI | MR

[15] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., AFTs, M., 1999, x+550 pp. ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | Zbl | MR

[16] I. M. Sobol, Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969, 288 pp. | MR

[17] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl