@article{SM_2014_205_2_a5,
author = {S. I. Pokhozhaev},
title = {Smooth solutions of the {Navier-Stokes} equations},
journal = {Sbornik. Mathematics},
pages = {277--290},
year = {2014},
volume = {205},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/}
}
S. I. Pokhozhaev. Smooth solutions of the Navier-Stokes equations. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 277-290. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/
[1] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001, xiv+347 pp. | DOI | MR | Zbl
[2] C. Kahane, “On the spatial analyticity of solutions of the Navier–Stokes equations”, Arch. Rational Mech. Anal., 33:5 (1969), 386–405 | DOI | MR | Zbl
[3] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach Science Publishers, New York–London, 1963, xiv+184 pp. | MR | MR | Zbl | Zbl
[4] Zhen Lei, Fang-Hua Lin, “Global mild solutions of Navier–Stokes equations”, Comm. Pure Appl. Math., 64:9 (2011), 1297–1304 | DOI | MR | Zbl
[5] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl
[6] K. Masuda, “On the analiticity and the unique continuation theorem for solutions of the Navier–Stokes equations”, Proc. Japan Acad., 43:9 (1967), 827–832 | DOI | MR | Zbl
[7] R. Temam, Navier–Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conf. Ser. in Appl. Math., 66, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995, xiv+141 pp. | DOI | MR | Zbl
[8] J. Serrin, “On the interior regularity of weak solutions of the Navier–Stokes equations”, Arch. Rational Mech. Anal., 9:1 (1962), 187–195 | DOI | MR | Zbl
[9] J. G. Heywood, “The Navier–Stokes equations: On the existance, regularity and decay of solutions”, Indiana Univ. Math. J., 29:5 (1980), 639–681 | DOI | MR | Zbl
[10] A. A. Ilin, “Ob odnom klasse tochnykh neravenstv dlya periodicheskikh funktsii. Dopolnenie k state S. I. Pokhozhaeva “Gladkie resheniya uravnenii Nave–Stoksa””, Matem. sb., 205:2 (2014), 71–74