Smooth solutions of the Navier-Stokes equations
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 277-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to $x\in\mathbb R^3$. We obtain existence theorems for global (with respect to $t>0$) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on $t$, are also obtained. Bibliography: 10 titles.
Keywords: Navier-Stokes equations, smooth (strong) solutions, bounds for solutions.
@article{SM_2014_205_2_a5,
     author = {S. I. Pokhozhaev},
     title = {Smooth solutions of the {Navier-Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {277--290},
     year = {2014},
     volume = {205},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - Smooth solutions of the Navier-Stokes equations
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 277
EP  - 290
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/
LA  - en
ID  - SM_2014_205_2_a5
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T Smooth solutions of the Navier-Stokes equations
%J Sbornik. Mathematics
%D 2014
%P 277-290
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/
%G en
%F SM_2014_205_2_a5
S. I. Pokhozhaev. Smooth solutions of the Navier-Stokes equations. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 277-290. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/

[1] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001, xiv+347 pp. | DOI | MR | Zbl

[2] C. Kahane, “On the spatial analyticity of solutions of the Navier–Stokes equations”, Arch. Rational Mech. Anal., 33:5 (1969), 386–405 | DOI | MR | Zbl

[3] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach Science Publishers, New York–London, 1963, xiv+184 pp. | MR | MR | Zbl | Zbl

[4] Zhen Lei, Fang-Hua Lin, “Global mild solutions of Navier–Stokes equations”, Comm. Pure Appl. Math., 64:9 (2011), 1297–1304 | DOI | MR | Zbl

[5] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[6] K. Masuda, “On the analiticity and the unique continuation theorem for solutions of the Navier–Stokes equations”, Proc. Japan Acad., 43:9 (1967), 827–832 | DOI | MR | Zbl

[7] R. Temam, Navier–Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conf. Ser. in Appl. Math., 66, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995, xiv+141 pp. | DOI | MR | Zbl

[8] J. Serrin, “On the interior regularity of weak solutions of the Navier–Stokes equations”, Arch. Rational Mech. Anal., 9:1 (1962), 187–195 | DOI | MR | Zbl

[9] J. G. Heywood, “The Navier–Stokes equations: On the existance, regularity and decay of solutions”, Indiana Univ. Math. J., 29:5 (1980), 639–681 | DOI | MR | Zbl

[10] A. A. Ilin, “Ob odnom klasse tochnykh neravenstv dlya periodicheskikh funktsii. Dopolnenie k state S. I. Pokhozhaeva “Gladkie resheniya uravnenii Nave–Stoksa””, Matem. sb., 205:2 (2014), 71–74