Smooth solutions of the Navier-Stokes equations
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 277-290

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to $x\in\mathbb R^3$. We obtain existence theorems for global (with respect to $t>0$) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on $t$, are also obtained. Bibliography: 10 titles.
Keywords: Navier-Stokes equations, smooth (strong) solutions, bounds for solutions.
@article{SM_2014_205_2_a5,
     author = {S. I. Pokhozhaev},
     title = {Smooth solutions of the {Navier-Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {277--290},
     publisher = {mathdoc},
     volume = {205},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - Smooth solutions of the Navier-Stokes equations
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 277
EP  - 290
VL  - 205
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/
LA  - en
ID  - SM_2014_205_2_a5
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T Smooth solutions of the Navier-Stokes equations
%J Sbornik. Mathematics
%D 2014
%P 277-290
%V 205
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/
%G en
%F SM_2014_205_2_a5
S. I. Pokhozhaev. Smooth solutions of the Navier-Stokes equations. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 277-290. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a5/