Mots-clés : Liouville foliation, Fomenko-Zieschang invariant.
@article{SM_2014_205_2_a3,
author = {S. S. Nikolaenko},
title = {A topological classification of the {Chaplygin} systems in the dynamics of a~rigid body in a~fluid},
journal = {Sbornik. Mathematics},
pages = {224--268},
year = {2014},
volume = {205},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a3/}
}
S. S. Nikolaenko. A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 224-268. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a3/
[1] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[2] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[3] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl
[4] Nguyen Tien Zung, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135 | DOI | MR | Zbl
[5] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl
[6] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl
[7] A. T. Fomenko, “Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a heavy rigid body”, J. Math. Sci. (New York), 94:4 (1999), 1512–1557 | DOI | MR | Zbl
[8] A. V. Bolsinov, A. T. Fomenko, “On the dimension of the space of integrable Hamiltonian systems with two degrees of freedom”, Proc. Steklov Inst. Math., 216 (1997), 38–62 | MR | Zbl
[9] A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189:10 (1998), 1441–1466 | DOI | DOI | MR | Zbl
[10] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl
[11] V. V. Trofimov, A. T. Fomenko, “Riemannian geometry”, J. Math. Sci. (New York), 109:2 (2002), 1345–1501 | DOI | MR | Zbl
[12] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl
[13] E. A. Kudryavtseva, A. T. Fomenko, “Symmetry groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl
[14] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl
[15] O. E. Orel, P. E. Ryabov, “Bifurcation sets in a problem on motion of a rigid body in fluid and in the generalization of this problem”, Regul. Chaotic Dyn., 3:2 (1998), 82–91 | DOI | MR | Zbl
[16] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl
[17] P. I. Topalov, “Computation of the fine Fomenko–Zieschang invariant for the main integrable cases of rigid body motion”, Sb. Math., 187:3 (1996), 451–468 | DOI | DOI | MR | Zbl
[18] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Tr. otd. fiz. nauk obsch-va lyubitelei estestvoznaniya, 11:2 (1903), 7–10
[19] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl
[20] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805
[21] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: II. Prilozheniya k novym algebraicheskim resheniyam”, Nelineinaya dinam., 7:1 (2011), 25–51
[22] M. P. Kharlamov, A. Yu. Savushkin, “Separation of variables, and integral manifolds in a particular problem of the motion of a generalized Kovalevskaya top”, Ukr. Math. Bull., 1:4 (2004), 569–586 | MR | Zbl
[23] G. E. Smirnov, M. P. Kharlamov, “Krugovye molekuly v odnoi chastnoi zadache o dvizhenii obobschennogo volchka Kovalevskoi”, Regionalnye aspekty predprinimatelstva: proshloe i nastoyaschee, Materialy pyatoi mezhregionalnoi nauchno-prakticheskoi konferentsii (Yaroslavl, 17 aprelya 2013 g.), ed. E. E. Belova, Izd-vo “Kantsler”, Yaroslavl