A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 224-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body with fixed point. Bibliography: 23 titles.
Keywords: Kirchhoff's equations, Chaplygin case, integrable Hamiltonian system
Mots-clés : Liouville foliation, Fomenko-Zieschang invariant.
@article{SM_2014_205_2_a3,
     author = {S. S. Nikolaenko},
     title = {A topological classification of the {Chaplygin} systems in the dynamics of a~rigid body in a~fluid},
     journal = {Sbornik. Mathematics},
     pages = {224--268},
     year = {2014},
     volume = {205},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a3/}
}
TY  - JOUR
AU  - S. S. Nikolaenko
TI  - A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 224
EP  - 268
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a3/
LA  - en
ID  - SM_2014_205_2_a3
ER  - 
%0 Journal Article
%A S. S. Nikolaenko
%T A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid
%J Sbornik. Mathematics
%D 2014
%P 224-268
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2014_205_2_a3/
%G en
%F SM_2014_205_2_a3
S. S. Nikolaenko. A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 224-268. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a3/

[1] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[2] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[3] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl

[4] Nguyen Tien Zung, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135 | DOI | MR | Zbl

[5] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl

[6] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl

[7] A. T. Fomenko, “Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a heavy rigid body”, J. Math. Sci. (New York), 94:4 (1999), 1512–1557 | DOI | MR | Zbl

[8] A. V. Bolsinov, A. T. Fomenko, “On the dimension of the space of integrable Hamiltonian systems with two degrees of freedom”, Proc. Steklov Inst. Math., 216 (1997), 38–62 | MR | Zbl

[9] A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189:10 (1998), 1441–1466 | DOI | DOI | MR | Zbl

[10] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl

[11] V. V. Trofimov, A. T. Fomenko, “Riemannian geometry”, J. Math. Sci. (New York), 109:2 (2002), 1345–1501 | DOI | MR | Zbl

[12] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[13] E. A. Kudryavtseva, A. T. Fomenko, “Symmetry groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl

[14] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[15] O. E. Orel, P. E. Ryabov, “Bifurcation sets in a problem on motion of a rigid body in fluid and in the generalization of this problem”, Regul. Chaotic Dyn., 3:2 (1998), 82–91 | DOI | MR | Zbl

[16] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl

[17] P. I. Topalov, “Computation of the fine Fomenko–Zieschang invariant for the main integrable cases of rigid body motion”, Sb. Math., 187:3 (1996), 451–468 | DOI | DOI | MR | Zbl

[18] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Tr. otd. fiz. nauk obsch-va lyubitelei estestvoznaniya, 11:2 (1903), 7–10

[19] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl

[20] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805

[21] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: II. Prilozheniya k novym algebraicheskim resheniyam”, Nelineinaya dinam., 7:1 (2011), 25–51

[22] M. P. Kharlamov, A. Yu. Savushkin, “Separation of variables, and integral manifolds in a particular problem of the motion of a generalized Kovalevskaya top”, Ukr. Math. Bull., 1:4 (2004), 569–586 | MR | Zbl

[23] G. E. Smirnov, M. P. Kharlamov, “Krugovye molekuly v odnoi chastnoi zadache o dvizhenii obobschennogo volchka Kovalevskoi”, Regionalnye aspekty predprinimatelstva: proshloe i nastoyaschee, Materialy pyatoi mezhregionalnoi nauchno-prakticheskoi konferentsii (Yaroslavl, 17 aprelya 2013 g.), ed. E. E. Belova, Izd-vo “Kantsler”, Yaroslavl