Ergodic decomposition for measures quasi-invariant under a~Borel action of an inductively compact group
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 192-219
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of this paper is to prove ergodic decomposition theorems for probability measures which are
quasi-invariant under Borel actions of inductively compact groups as well as for $\sigma$-finite invariant measures. For infinite measures the ergodic decomposition is not unique, but the measure class of the decomposing measure on the space of projective measures is uniquely defined by the initial invariant measure.
Bibliography: 21 titles.
Keywords:
ergodic decomposition, infinite-dimensional groups, quasi-invariant measure, infinite-dimensional unitary group, measurable decomposition.
@article{SM_2014_205_2_a1,
author = {A. I. Bufetov},
title = {Ergodic decomposition for measures quasi-invariant under {a~Borel} action of an inductively compact group},
journal = {Sbornik. Mathematics},
pages = {192--219},
publisher = {mathdoc},
volume = {205},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/}
}
TY - JOUR AU - A. I. Bufetov TI - Ergodic decomposition for measures quasi-invariant under a~Borel action of an inductively compact group JO - Sbornik. Mathematics PY - 2014 SP - 192 EP - 219 VL - 205 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/ LA - en ID - SM_2014_205_2_a1 ER -
A. I. Bufetov. Ergodic decomposition for measures quasi-invariant under a~Borel action of an inductively compact group. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 192-219. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/