Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 192-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to prove ergodic decomposition theorems for probability measures which are quasi-invariant under Borel actions of inductively compact groups as well as for $\sigma$-finite invariant measures. For infinite measures the ergodic decomposition is not unique, but the measure class of the decomposing measure on the space of projective measures is uniquely defined by the initial invariant measure. Bibliography: 21 titles.
Keywords: ergodic decomposition, infinite-dimensional groups, quasi-invariant measure, infinite-dimensional unitary group, measurable decomposition.
@article{SM_2014_205_2_a1,
     author = {A. I. Bufetov},
     title = {Ergodic decomposition for measures quasi-invariant under {a~Borel} action of an inductively compact group},
     journal = {Sbornik. Mathematics},
     pages = {192--219},
     year = {2014},
     volume = {205},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 192
EP  - 219
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/
LA  - en
ID  - SM_2014_205_2_a1
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group
%J Sbornik. Mathematics
%D 2014
%P 192-219
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/
%G en
%F SM_2014_205_2_a1
A. I. Bufetov. Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 192-219. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/

[1] S. V. Fomin, “O merakh, invariantnykh otnositelno nekotoroi gruppy preobrazovanii”, Izv. AN SSSR. Ser. matem., 14:3 (1950), 261–274 | MR | Zbl

[2] A. I. Bufetov, Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices, 2011, 14 pp., arXiv: 1108.2737

[3] A. I. Bufetov, “Infinite determinantal measures”, Electron. Res. Announc. Math. Sci., 20 (2013), 12–30 | DOI | MR | Zbl

[4] D. Pickrell, “Measures on infinite-dimensional Grassmann manifolds”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123 | DOI | MR | Zbl

[6] J. von Neumann, “Zur Operatorenmethode in der klassischen Mechanik”, Ann. of Math. (2), 33:3 (1932), 587–642 | DOI | MR | Zbl

[7] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systémes dynamiques de la mécanique non linéaire”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR | Zbl

[8] M. M. Bogolyubov, “Pro deyaki ergodichni vlastivosti sutsilnikh grup peretvoren”, Nauk. zap. Kiiv. derzh. univ. im. T. G. Shevchenka. Fiz.-mat. zb., 4:5 (1939), 45–52; Н. Н. Боголюбов, “О некоторых эргодических свойствах непрерывных групп преобразований”, Избранные труды, т. 1, Наук. думка, Киев, 1969, 561–569 | MR | Zbl

[9] V. A. Rokhlin, “O razlozhenii dinamicheskoi sistemy na tranzitivnye komponenty”, Matem. sb., 25(67):2 (1949), 235–249 | MR | Zbl

[10] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | MR | Zbl

[11] Yu. I. Kifer, S. A. Pirogov, “O razlozhenii kvaziinvariantnykh mer na ergodicheskie komponenty”, UMN, 27:5(167) (1972), 239–240 | MR | Zbl

[12] V. S. Varadarajan, “Groups of automorphisms of Borel spaces”, Trans. Amer. Math. Soc., 109:2 (1963), 191–220 | DOI | MR | Zbl

[13] G. Greschonig, K. Schmidt, Dedicated to the memory of Anzelm Iwanik, Colloq. Math., 84/85, part 2, 2000 | MR | Zbl

[14] R. R. Phelps, Lectures on Choquet's theorem, Lecture Notes in Math., 1757, 2nd ed., Springer-Verlag, Berlin, 2001, viii+124 pp. | DOI | MR | Zbl

[15] A. M. Vershik, “Opisanie invariantnykh mer dlya deistviya nekotorykh beskonechnomernykh grupp”, Dokl. AN SSSR, 218:4 (1974), 749–752 | MR | Zbl

[16] G. I. Olshanskii, Unitarnye predstavleniya beskonechnomernykh klassicheskikh grupp, Dis. ... dokt. fiz.-matem. nauk, In-t geografii AN SSSR, M., 1989, 271 pp.

[17] K. Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Math., 1, Macmillan Company of India, Ltd., Delhi, 1977, 202 pp. | MR | Zbl

[18] J. Neveu, Martingales à temps discret [Discrete-parameter martingales], Masson et Cie, éditeurs, Paris, 1972, vii+218 pp. | MR

[19] M. Ya. Souslin, “Sur une définition des ensembles mesurables B sans normbres transfinis”, C. R. Acad. Sci. Paris, 164:2 (1917), 88–91 | Zbl

[20] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. ; V. I. Bogachev, Osnovy teorii mery, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003, 544 s., 576 pp. | DOI | MR | Zbl

[21] Y. Coudène, Théorie ergodique et systèmes dynamiques, notes du cours de DEA, Savoirs Actuels, EDP Sciences/CNRS-Editions, Les Ulis, France, 2013, 196 pp.