@article{SM_2014_205_2_a1,
author = {A. I. Bufetov},
title = {Ergodic decomposition for measures quasi-invariant under {a~Borel} action of an inductively compact group},
journal = {Sbornik. Mathematics},
pages = {192--219},
year = {2014},
volume = {205},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/}
}
A. I. Bufetov. Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 192-219. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a1/
[1] S. V. Fomin, “O merakh, invariantnykh otnositelno nekotoroi gruppy preobrazovanii”, Izv. AN SSSR. Ser. matem., 14:3 (1950), 261–274 | MR | Zbl
[2] A. I. Bufetov, Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices, 2011, 14 pp., arXiv: 1108.2737
[3] A. I. Bufetov, “Infinite determinantal measures”, Electron. Res. Announc. Math. Sci., 20 (2013), 12–30 | DOI | MR | Zbl
[4] D. Pickrell, “Measures on infinite-dimensional Grassmann manifolds”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl
[5] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123 | DOI | MR | Zbl
[6] J. von Neumann, “Zur Operatorenmethode in der klassischen Mechanik”, Ann. of Math. (2), 33:3 (1932), 587–642 | DOI | MR | Zbl
[7] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systémes dynamiques de la mécanique non linéaire”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR | Zbl
[8] M. M. Bogolyubov, “Pro deyaki ergodichni vlastivosti sutsilnikh grup peretvoren”, Nauk. zap. Kiiv. derzh. univ. im. T. G. Shevchenka. Fiz.-mat. zb., 4:5 (1939), 45–52; Н. Н. Боголюбов, “О некоторых эргодических свойствах непрерывных групп преобразований”, Избранные труды, т. 1, Наук. думка, Киев, 1969, 561–569 | MR | Zbl
[9] V. A. Rokhlin, “O razlozhenii dinamicheskoi sistemy na tranzitivnye komponenty”, Matem. sb., 25(67):2 (1949), 235–249 | MR | Zbl
[10] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | MR | Zbl
[11] Yu. I. Kifer, S. A. Pirogov, “O razlozhenii kvaziinvariantnykh mer na ergodicheskie komponenty”, UMN, 27:5(167) (1972), 239–240 | MR | Zbl
[12] V. S. Varadarajan, “Groups of automorphisms of Borel spaces”, Trans. Amer. Math. Soc., 109:2 (1963), 191–220 | DOI | MR | Zbl
[13] G. Greschonig, K. Schmidt, Dedicated to the memory of Anzelm Iwanik, Colloq. Math., 84/85, part 2, 2000 | MR | Zbl
[14] R. R. Phelps, Lectures on Choquet's theorem, Lecture Notes in Math., 1757, 2nd ed., Springer-Verlag, Berlin, 2001, viii+124 pp. | DOI | MR | Zbl
[15] A. M. Vershik, “Opisanie invariantnykh mer dlya deistviya nekotorykh beskonechnomernykh grupp”, Dokl. AN SSSR, 218:4 (1974), 749–752 | MR | Zbl
[16] G. I. Olshanskii, Unitarnye predstavleniya beskonechnomernykh klassicheskikh grupp, Dis. ... dokt. fiz.-matem. nauk, In-t geografii AN SSSR, M., 1989, 271 pp.
[17] K. Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Math., 1, Macmillan Company of India, Ltd., Delhi, 1977, 202 pp. | MR | Zbl
[18] J. Neveu, Martingales à temps discret [Discrete-parameter martingales], Masson et Cie, éditeurs, Paris, 1972, vii+218 pp. | MR
[19] M. Ya. Souslin, “Sur une définition des ensembles mesurables B sans normbres transfinis”, C. R. Acad. Sci. Paris, 164:2 (1917), 88–91 | Zbl
[20] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. ; V. I. Bogachev, Osnovy teorii mery, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003, 544 s., 576 pp. | DOI | MR | Zbl
[21] Y. Coudène, Théorie ergodique et systèmes dynamiques, notes du cours de DEA, Savoirs Actuels, EDP Sciences/CNRS-Editions, Les Ulis, France, 2013, 196 pp.