@article{SM_2014_205_2_a0,
author = {I. Yu. Beschastnyi},
title = {The optimal rolling of a~sphere, with twisting but without slipping},
journal = {Sbornik. Mathematics},
pages = {157--191},
year = {2014},
volume = {205},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a0/}
}
I. Yu. Beschastnyi. The optimal rolling of a sphere, with twisting but without slipping. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 157-191. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a0/
[1] J. M. Hammersley, “Oxford commemoration ball”, Probability, statistics and analysis, London Math. Soc. Lecture Note Ser., 79, Cambridge Univ. Press, Cambridge–New York, 1983, 112–142 | MR | Zbl
[2] A. M. Arthurs, G. R. Walsh, “On Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 529–534 | DOI | MR | Zbl
[3] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl
[4] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | DOI | MR | Zbl
[5] A. P. Mashtakov, Yu. L. Sachkov, “Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane”, Sb. Math., 202:9 (2011), 1347–1371 | DOI | DOI | MR | Zbl
[6] A. P. Mashtakov, “Asimptotika ekstremalnykh krivykh v zadache o kachenii shara po ploskosti”, Trudy Mezhdunarodnoi konferentsii po matematicheskoi teorii upravleniya i mekhanike (Suzdal, 2009), SMFN, 42, RUDN, M., 2011, 158–165 | MR
[7] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl
[8] Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039 | DOI | MR | Zbl
[9] A. A. Ardentov, Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202:11 (2011), 1593–1615 | DOI | DOI | MR | Zbl
[10] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Sb. Math., 194:9 (2003), 1331–1359 | DOI | DOI | MR | Zbl
[11] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | DOI | MR | Zbl
[12] S. Popov, Ekstremalnye traektorii v zadache o kachenii sfery po ploskosti s prokruchivaniem, Diplomnaya rabota, MGU im. M. V. Lomonosova, 2009
[13] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005 | Zbl
[14] M. M. Postnikov, Geometry VI. Riemannian geometry, Encyclopaedia Math. Sci., 91, Springer-Verlag, Berlin, 2001 | MR | Zbl | Zbl
[15] V. I. Arnold, Geometriya kompleksnykh chisel, kvaternionov i spinov, MTsNMO, M., 2002