The optimal rolling of a sphere, with twisting but without slipping
Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 157-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of a sphere rolling on the plane, with twisting but without slipping, is considered. It is required to roll the sphere from one configuration to another in such a way that the minimum of the action is attained. We obtain a complete parametrization of the extremal trajectories and analyse the natural symmetries of the Hamiltonian system of the Pontryagin maximum principle (rotations and reflections) and their fixed points. Based on the estimates obtained for the fixed points we prove upper estimates for the cut time, that is, the moment of time when an extremal trajectory loses optimality. We consider the problem of re-orienting the sphere in more detail; in particular, we find diffeomorphic domains in the pre-image and image of the exponential map which are used to construct the optimal synthesis. Bibliography: 15 titles.
Keywords: optimal control, geometric methods, symmetries, rolling of surfaces.
@article{SM_2014_205_2_a0,
     author = {I. Yu. Beschastnyi},
     title = {The optimal rolling of a~sphere, with twisting but without slipping},
     journal = {Sbornik. Mathematics},
     pages = {157--191},
     year = {2014},
     volume = {205},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_2_a0/}
}
TY  - JOUR
AU  - I. Yu. Beschastnyi
TI  - The optimal rolling of a sphere, with twisting but without slipping
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 157
EP  - 191
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_2_a0/
LA  - en
ID  - SM_2014_205_2_a0
ER  - 
%0 Journal Article
%A I. Yu. Beschastnyi
%T The optimal rolling of a sphere, with twisting but without slipping
%J Sbornik. Mathematics
%D 2014
%P 157-191
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2014_205_2_a0/
%G en
%F SM_2014_205_2_a0
I. Yu. Beschastnyi. The optimal rolling of a sphere, with twisting but without slipping. Sbornik. Mathematics, Tome 205 (2014) no. 2, pp. 157-191. http://geodesic.mathdoc.fr/item/SM_2014_205_2_a0/

[1] J. M. Hammersley, “Oxford commemoration ball”, Probability, statistics and analysis, London Math. Soc. Lecture Note Ser., 79, Cambridge Univ. Press, Cambridge–New York, 1983, 112–142 | MR | Zbl

[2] A. M. Arthurs, G. R. Walsh, “On Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 529–534 | DOI | MR | Zbl

[3] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl

[4] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | DOI | MR | Zbl

[5] A. P. Mashtakov, Yu. L. Sachkov, “Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane”, Sb. Math., 202:9 (2011), 1347–1371 | DOI | DOI | MR | Zbl

[6] A. P. Mashtakov, “Asimptotika ekstremalnykh krivykh v zadache o kachenii shara po ploskosti”, Trudy Mezhdunarodnoi konferentsii po matematicheskoi teorii upravleniya i mekhanike (Suzdal, 2009), SMFN, 42, RUDN, M., 2011, 158–165 | MR

[7] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl

[8] Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039 | DOI | MR | Zbl

[9] A. A. Ardentov, Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202:11 (2011), 1593–1615 | DOI | DOI | MR | Zbl

[10] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Sb. Math., 194:9 (2003), 1331–1359 | DOI | DOI | MR | Zbl

[11] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | DOI | MR | Zbl

[12] S. Popov, Ekstremalnye traektorii v zadache o kachenii sfery po ploskosti s prokruchivaniem, Diplomnaya rabota, MGU im. M. V. Lomonosova, 2009

[13] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005 | Zbl

[14] M. M. Postnikov, Geometry VI. Riemannian geometry, Encyclopaedia Math. Sci., 91, Springer-Verlag, Berlin, 2001 | MR | Zbl | Zbl

[15] V. I. Arnold, Geometriya kompleksnykh chisel, kvaternionov i spinov, MTsNMO, M., 2002