Topological classification of systems of Kovalevskaya-Yehia type
Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 101-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All the Fomenko-Zieschang invariants are calculated for the Kovalevskaya-Yehia problem, for all noncritical values of the parameters $g$ and $\lambda$, by constructing admissible systems of coordinates and determining the mutual disposition of the basis cycles. The family of Kovalevskaya-Yehia systems contains 29 pairwise Liouville non-equivalent foliations. These foliations include those that are equivalent to previously known foliations, which arose in the integrable cases of Kovalevskaya and of Kovalevskaya-Yehia for $g=0$, in the Zhukovskiǐ case, and in the Goryachev-Chaplygin-Sretenskiǐ case. Eleven new foliations are included in the 29 foliations, new in the sense that they are not Liouville equivalent to any foliations discovered earlier which arose in the known integrable cases of the rigid body. The topological type of the Liouville foliation for the family of Kovalevskaya-Yehia systems stabilizes at large values of the energy $H$, and this ‘high-energy’ system is roughly Liouville equivalent, at one of the energy levels, to the Goryachev-Chaplygin-Sretenskiǐ integrable case, which is already known. Bibliography: 29 titles.
Keywords: Liouville equivalent integrable systems.
Mots-clés : Fomenko-Zieschang invariants, Liouville foliation
@article{SM_2014_205_1_a5,
     author = {N. S. Slavina},
     title = {Topological classification of systems of {Kovalevskaya-Yehia} type},
     journal = {Sbornik. Mathematics},
     pages = {101--155},
     year = {2014},
     volume = {205},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_1_a5/}
}
TY  - JOUR
AU  - N. S. Slavina
TI  - Topological classification of systems of Kovalevskaya-Yehia type
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 101
EP  - 155
VL  - 205
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_1_a5/
LA  - en
ID  - SM_2014_205_1_a5
ER  - 
%0 Journal Article
%A N. S. Slavina
%T Topological classification of systems of Kovalevskaya-Yehia type
%J Sbornik. Mathematics
%D 2014
%P 101-155
%V 205
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2014_205_1_a5/
%G en
%F SM_2014_205_1_a5
N. S. Slavina. Topological classification of systems of Kovalevskaya-Yehia type. Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 101-155. http://geodesic.mathdoc.fr/item/SM_2014_205_1_a5/

[1] H. Yehia, “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR | Zbl

[2] Kh. M. Yakhya, “Novye integriruemye sluchai zadachi o dvizhenii girostata”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 4 (1987), 88–90

[3] Nguyen Tien Zung, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135 | DOI | MR | Zbl

[4] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | MR | Zbl | Zbl

[5] P. E. Ryabov, M. P. Kharlamov, “Bifurkatsii pervykh integralov v sluchae Kovalevskoi–Yakhi”, Regulyarnaya i khaoticheskaya dinamika, 2:2 (1997), 25–40 | MR | Zbl

[6] M. P. Kharlamov, I. I. Kharlamova, E. G. Shvedov, “Bifurkatsionnye diagrammy na izoenergeticheskikh urovnyakh girostata Kovalevskoi–Yakhya”, Mekhanika tverdogo tela, 40 (2010), 77–90 | MR

[7] I. I. Kharlamova, P. E. Ryabov, “Elektronnyi atlas bifurkatsionnykh diagramm girostata Kovalevskoi–Yakhi”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 2, 147–162

[8] M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. Mech., 47 (1983):6 (1985), 737–743 | DOI | MR | Zbl

[9] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of a rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl

[10] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Leningradskii un-t, Leningrad, 1988, 200 pp. | MR

[11] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vekt. i tenz. analizu, 25:2 (1993), 23–109 | Zbl

[12] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl

[13] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl

[14] I. N. Gashenenko, “Integralnye mnogoobraziya i topologicheskie invarianty odnogo sluchaya dvizheniya girostata”, Mekhanika tverdogo tela, 29 (1997), 1–7 | MR | Zbl

[15] P. E. Ryabov, Bifurkatsionnoe mnozhestvo zadachi o dvizhenii tverdogo tela vokrug nepodvizhnoi tochki v sluchae Kovalevskoi–Yakhi, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1997

[16] M. P. Kharlamov, P. E. Ryabov, “Diagrammy Smeila–Fomenko i grubye invarianty sluchaya Kovalevskoi–Yakhya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 4, 40–59

[17] P. E. Ryabov, “Analiticheskaya klassifikatsiya osobennostei integriruemogo sluchaya Kovalevskoi–Yakhya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 4, 25–30

[18] N. S. Logacheva, “Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya–Yehia integrable system”, Sb. Math., 203:1 (2012), 28–59 | DOI | DOI | MR | Zbl

[19] M. P. Kharlamov, “Analiticheskaya klassifikatsiya ravnomernykh vraschenii girostata Kovalevskoi–Yakhya”, Mekhanika tverdogo tela, 42 (2012), 46–60 | Zbl

[20] P. V. Morozov, “Calculation of the Fomenko–Zieschang invariants in the Kovalevskaya–Yehia integrable case”, Sb. Math., 198:8 (2007), 1119–1143 | DOI | DOI | MR | Zbl

[21] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl

[22] A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189:10 (1998), 1441–1466 | DOI | DOI | MR | Zbl

[23] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl

[24] P. P. Andreyanov, K. E. Dushin, “Bifurcation sets in the Kovalevskaya–Yehia problem”, Sb. Math., 203:4 (2012), 459–499 | DOI | DOI | MR | Zbl

[25] P. P. Andreyanov, Liuvilleva klassifikatsiya integriruemogo sluchaya Kovalevskoi–Yakhi zadachi o dvizhenii tverdogo tela, Dipl. rabota, 2010

[26] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[27] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | DOI | MR | Zbl

[28] P. I. Topalov, “Computation of the fine Fomenko–Zieschang invariant for the main integrable cases of rigid body motion”, Sb. Math., 187:3 (1996), 451–468 | DOI | DOI | MR | Zbl

[29] A. V. Bolsinov, A. T. Fomenko, “On the dimension of the space of integrable Hamiltonian systems with two degrees of freedom”, Proc. Steklov Inst. Math., 216 (1997), 38–62 | MR | Zbl