Mots-clés : Fomenko-Zieschang invariants, Liouville foliation
@article{SM_2014_205_1_a5,
author = {N. S. Slavina},
title = {Topological classification of systems of {Kovalevskaya-Yehia} type},
journal = {Sbornik. Mathematics},
pages = {101--155},
year = {2014},
volume = {205},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_1_a5/}
}
N. S. Slavina. Topological classification of systems of Kovalevskaya-Yehia type. Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 101-155. http://geodesic.mathdoc.fr/item/SM_2014_205_1_a5/
[1] H. Yehia, “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR | Zbl
[2] Kh. M. Yakhya, “Novye integriruemye sluchai zadachi o dvizhenii girostata”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 4 (1987), 88–90
[3] Nguyen Tien Zung, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135 | DOI | MR | Zbl
[4] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | MR | Zbl | Zbl
[5] P. E. Ryabov, M. P. Kharlamov, “Bifurkatsii pervykh integralov v sluchae Kovalevskoi–Yakhi”, Regulyarnaya i khaoticheskaya dinamika, 2:2 (1997), 25–40 | MR | Zbl
[6] M. P. Kharlamov, I. I. Kharlamova, E. G. Shvedov, “Bifurkatsionnye diagrammy na izoenergeticheskikh urovnyakh girostata Kovalevskoi–Yakhya”, Mekhanika tverdogo tela, 40 (2010), 77–90 | MR
[7] I. I. Kharlamova, P. E. Ryabov, “Elektronnyi atlas bifurkatsionnykh diagramm girostata Kovalevskoi–Yakhi”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 2, 147–162
[8] M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. Mech., 47 (1983):6 (1985), 737–743 | DOI | MR | Zbl
[9] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of a rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl
[10] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Leningradskii un-t, Leningrad, 1988, 200 pp. | MR
[11] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vekt. i tenz. analizu, 25:2 (1993), 23–109 | Zbl
[12] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl
[13] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl
[14] I. N. Gashenenko, “Integralnye mnogoobraziya i topologicheskie invarianty odnogo sluchaya dvizheniya girostata”, Mekhanika tverdogo tela, 29 (1997), 1–7 | MR | Zbl
[15] P. E. Ryabov, Bifurkatsionnoe mnozhestvo zadachi o dvizhenii tverdogo tela vokrug nepodvizhnoi tochki v sluchae Kovalevskoi–Yakhi, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1997
[16] M. P. Kharlamov, P. E. Ryabov, “Diagrammy Smeila–Fomenko i grubye invarianty sluchaya Kovalevskoi–Yakhya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 4, 40–59
[17] P. E. Ryabov, “Analiticheskaya klassifikatsiya osobennostei integriruemogo sluchaya Kovalevskoi–Yakhya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 4, 25–30
[18] N. S. Logacheva, “Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya–Yehia integrable system”, Sb. Math., 203:1 (2012), 28–59 | DOI | DOI | MR | Zbl
[19] M. P. Kharlamov, “Analiticheskaya klassifikatsiya ravnomernykh vraschenii girostata Kovalevskoi–Yakhya”, Mekhanika tverdogo tela, 42 (2012), 46–60 | Zbl
[20] P. V. Morozov, “Calculation of the Fomenko–Zieschang invariants in the Kovalevskaya–Yehia integrable case”, Sb. Math., 198:8 (2007), 1119–1143 | DOI | DOI | MR | Zbl
[21] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl
[22] A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189:10 (1998), 1441–1466 | DOI | DOI | MR | Zbl
[23] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl
[24] P. P. Andreyanov, K. E. Dushin, “Bifurcation sets in the Kovalevskaya–Yehia problem”, Sb. Math., 203:4 (2012), 459–499 | DOI | DOI | MR | Zbl
[25] P. P. Andreyanov, Liuvilleva klassifikatsiya integriruemogo sluchaya Kovalevskoi–Yakhi zadachi o dvizhenii tverdogo tela, Dipl. rabota, 2010
[26] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl
[27] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | DOI | MR | Zbl
[28] P. I. Topalov, “Computation of the fine Fomenko–Zieschang invariant for the main integrable cases of rigid body motion”, Sb. Math., 187:3 (1996), 451–468 | DOI | DOI | MR | Zbl
[29] A. V. Bolsinov, A. T. Fomenko, “On the dimension of the space of integrable Hamiltonian systems with two degrees of freedom”, Proc. Steklov Inst. Math., 216 (1997), 38–62 | MR | Zbl