Generalized Lions-Peetre interpolation construction and optimal embedding theorems for Sobolev spaces
Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 83-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a new description of the generalized Lions-Peetre method of means is found, which enables one to evaluate the interpolation orbits of spaces constructed by this method. The list of these spaces includes all Lorentz spaces with functional parameters, Orlicz spaces, and spaces close to them. This leads in turn to new optimal embedding theorems for Sobolev spaces produced using the Lions-Peetre construction in rearrangement invariant spaces. It turns out that the optimal space of the embedding is also a generalized Lions-Peetre space whose parameters are explicitly evaluated. Bibliography: 18 titles.
Keywords: embedding theorems, rearrangement invariant spaces, generalized Lions-Peetre spaces of means.
Mots-clés : Sobolev spaces, interpolation orbits
@article{SM_2014_205_1_a4,
     author = {V. I. Ovchinnikov},
     title = {Generalized {Lions-Peetre} interpolation construction and optimal embedding theorems for {Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {83--100},
     year = {2014},
     volume = {205},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_1_a4/}
}
TY  - JOUR
AU  - V. I. Ovchinnikov
TI  - Generalized Lions-Peetre interpolation construction and optimal embedding theorems for Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 83
EP  - 100
VL  - 205
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_1_a4/
LA  - en
ID  - SM_2014_205_1_a4
ER  - 
%0 Journal Article
%A V. I. Ovchinnikov
%T Generalized Lions-Peetre interpolation construction and optimal embedding theorems for Sobolev spaces
%J Sbornik. Mathematics
%D 2014
%P 83-100
%V 205
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2014_205_1_a4/
%G en
%F SM_2014_205_1_a4
V. I. Ovchinnikov. Generalized Lions-Peetre interpolation construction and optimal embedding theorems for Sobolev spaces. Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 83-100. http://geodesic.mathdoc.fr/item/SM_2014_205_1_a4/

[1] A. Cianchi, “Optimal Orlicz–Sobolev embeddings”, Rev. Mat. Iberoamericana, 20:2 (2004), 427–474 | DOI | MR | Zbl

[2] A. Gogatishvili, V. I. Ovchinnikov, “Interpolation orbits and optimal Sobolev's embeddings”, J. Funct. Anal., 253:1 (2007), 1–17 | DOI | MR | Zbl

[3] J. Peetre, “Sur le nombre de paramétres dans la définition de certains espaces d'interpolation”, Ricerche Mat., 12 (1963), 248–261 | MR | Zbl

[4] J.-L. Lions, J. Peetre, “Sur une classe d'espaces d'interpolation”, Inst. Hautes Études Sci. Publ. Math., 19:1 (1964), 5–68 | DOI | MR | Zbl

[5] V. I. Dmitriev, S. G. Krein, V. I. Ovchinnikov, “Osnovy teorii interpolyatsii lineinykh operatorov”, Geometriya lineinykh prostranstv i teoriya operatorov, Izd-vo Yaroslav. gos. un-ta, Yaroslavl, 1977, 31–74 | MR | Zbl

[6] S. Janson, “Minimal and maximal methods in interpolation”, J. Funct. Anal., 44:1 (1981), 50–73 | DOI | MR | Zbl

[7] V. I. Ovchinnikov, “Interpolation orbits in couples of $L_p$ spaces”, C. R. Math. Acad. Sci. Paris, Ser. I, 334:10 (2002), 881–884 | DOI | MR | Zbl

[8] V. I. Dmitriev, “On the Lions–Peetre method for the construction of interpolation spaces”, Soviet Math. Dokl., 12 (1971), 864–868 | MR | Zbl

[9] V. I. Dmitriev, “Theorems on parameters for the interpolation method of constants”, Soviet Math. Dokl., 15 (1974), 773–775 | MR | Zbl

[10] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl

[11] Yu. A. Brudnyĭ, N. Ya. Krugljak, Interpolation functors and interpolation spaces, v. I, North-Holland Math. Library, North-Holland Publishing Co., Amsterdam, 1991, xvi+718 pp. | MR | Zbl

[12] P. I. Lizorkin, “Interpolation of weighted $L_p$ spaces”, Soviet Math. Dokl., 16:3 (1975), 557–581 | MR | Zbl

[13] E. D. Kravishvili, “Metod srednikh s proizvolnym funktsionalnym parametrom”, Tr. matem. fak. Voronezh. gos. un-ta (Nov. ser.), 7 (2002), 58–72

[14] V. I. Ovchinnikov, “Interpolation orbits in couples of Lebesgue spaces”, Funct. Anal. Appl., 39:1 (2005), 46–56 | DOI | DOI | MR | Zbl

[15] V. I. Ovchinnikov, “Interpolation theorems resulting from an inequality of Grothendieck”, Funct. Anal. Appl., 10:4 (1976), 287–294 | DOI | MR | Zbl

[16] V. I. Ovchinnikov, “On estimates of interpolation orbits”, Math. USSR-Sb., 43:4 (1982), 573–583 | DOI | MR | Zbl

[17] R. Kerman, L. Pick, “Optimal Sobolev imbeddings”, Forum Math., 18:4 (2006), 535–570 | DOI | MR | Zbl

[18] A. M. Grishina, V. I. Ovchinnikov, “Interpolyatsionnaya teorema dlya prostranstv Orlicha–Lorentsa”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Matem., 2013, no. 2, 162–173