On small values of the Riemann zeta-function at Gram points
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 63-82
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we prove the existence of a large set of Gram points $t_{n}$ such that the values 
$\zeta(0.5+it_{n})$ are ‘anomalously’ close to zero. A lower bound for the negative ‘discrete’ moment of the Riemann zeta-function on the critical line is also given.
Bibliography: 13 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Riemann zeta-function, Hardy's function, Gram points.
                    
                    
                    
                  
                
                
                @article{SM_2014_205_1_a3,
     author = {M. A. Korolev},
     title = {On small values of the {Riemann} zeta-function at {Gram} points},
     journal = {Sbornik. Mathematics},
     pages = {63--82},
     publisher = {mathdoc},
     volume = {205},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_1_a3/}
}
                      
                      
                    M. A. Korolev. On small values of the Riemann zeta-function at Gram points. Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 63-82. http://geodesic.mathdoc.fr/item/SM_2014_205_1_a3/
