On small values of the Riemann zeta-function at Gram points
Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 63-82

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the existence of a large set of Gram points $t_{n}$ such that the values $\zeta(0.5+it_{n})$ are ‘anomalously’ close to zero. A lower bound for the negative ‘discrete’ moment of the Riemann zeta-function on the critical line is also given. Bibliography: 13 titles.
Keywords: Riemann zeta-function, Hardy's function, Gram points.
@article{SM_2014_205_1_a3,
     author = {M. A. Korolev},
     title = {On small values of the {Riemann} zeta-function at {Gram} points},
     journal = {Sbornik. Mathematics},
     pages = {63--82},
     publisher = {mathdoc},
     volume = {205},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_1_a3/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On small values of the Riemann zeta-function at Gram points
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 63
EP  - 82
VL  - 205
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_1_a3/
LA  - en
ID  - SM_2014_205_1_a3
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On small values of the Riemann zeta-function at Gram points
%J Sbornik. Mathematics
%D 2014
%P 63-82
%V 205
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_1_a3/
%G en
%F SM_2014_205_1_a3
M. A. Korolev. On small values of the Riemann zeta-function at Gram points. Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 63-82. http://geodesic.mathdoc.fr/item/SM_2014_205_1_a3/