Mots-clés : Poisson bracket, coadjoint representation
@article{SM_2014_205_1_a2,
author = {A. Yu. Konyaev},
title = {Classification of {Lie} algebras with generic orbits of dimension~2 in the coadjoint representation},
journal = {Sbornik. Mathematics},
pages = {45--62},
year = {2014},
volume = {205},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_1_a2/}
}
A. Yu. Konyaev. Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation. Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 45-62. http://geodesic.mathdoc.fr/item/SM_2014_205_1_a2/
[1] A. V. Bolsinov, A. M. Izosimov, A. Yu. Konyaev, A. A. Oshemkov, “Algebra i topologiya integriruemykh sistem. Zadachi dlya issledovaniya”, Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, 28, ed. A. A. Oshemkov, Izd-vo Mosk. un-ta, M., 2012, 119–191
[2] A. V. Bolsinov, I. A. Taimanov, “Integrable geodesic flows with positive topological entropy”, Invent. Math., 140:3 (2000), 639–650 | DOI | MR | Zbl
[3] A. V. Bolsinov, I. A. Taimanov, “Integrable geodesic flows on suspensions of automorphisms of tori”, Proc. Steklov Inst. Math., 231 (2000), 42–58 | MR | Zbl
[4] A. S. Mishchenko, A. T. Fomenko, “Symplectic Lie group actions”, Algebraic topology, Aarhus 1978, Proc. Sympos. (Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., 763, Springer-Verlag, 1979, 504–538 | MR | Zbl
[5] A. T. Fomenko, “On symplectic structures and integrable systems on symmetric spaces”, Math. USSR-Sb., 43:2 (1982), 235–250 | DOI | MR | Zbl
[6] V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67 | DOI | MR | Zbl
[7] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl
[8] A. T. Fomenko, V. V. Trofimov, Integrable systems on Lie algebras and symmetric spaces, Adv. Stud. Contemp. Math., 2, Gordon and Breach Science Publishers, New York, 1988, xii+294 pp. | MR | Zbl
[9] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl
[10] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Matematika i ee prilozheniya, Faktorial, M.; Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1995, 448 pp. | MR | Zbl
[11] D. Panyushev, O. Yakimova, “The argument shift method and maximal commutative subalgebras of Poisson algebras”, Math. Res. Lett., 15:2 (2008), 239–249 | DOI | MR | Zbl
[12] A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90 | DOI | MR | Zbl
[13] S. A. Shashkov, “Commutative homogeneous spaces with one-dimensional stabilizer”, Izv. Math., 76:4 (2012), 820–839 | DOI | DOI | MR | Zbl
[14] D. Arnal, M. Cahen, J. Ludwig, “Lie groups whose coadjoint orbits are of dimension smaller or equal to two”, Lett. Math. Phys., 33:2 (1995), 183–186 | DOI | MR | Zbl
[15] G. M. Mubarakzyanov, “Nekotorye teoremy o razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1966, no. 6, 95–98 | Zbl
[16] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Gamiltonovost i integriruemost zadachi Suslova”, Nelineinaya dinam., 6:1 (2010), 127–142
[17] J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts Appl. Math., 17, 2nd ed., Springer-Verlag, New York, 1999, xviii+582 pp. | MR | Zbl
[18] L. Bianchi, “Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti”, Mem. Mat. Fis. Soc. Ital. Sci. (3), 11 (1898), 267–352 | Zbl
[19] J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, “Invariants of real low dimension Lie algebras”, J. Mathematical Phys., 6:17 (1976), 986–994 | DOI | MR | Zbl
[20] A. A. Korotkevich, “Integrable Hamiltonian systems on low-dimensional Lie algebras”, Sb. Math., 200:12 (2009), 1731–1766 | DOI | DOI | MR | Zbl