Solutions to higher-order anisotropic parabolic equations in unbounded domains
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 7-44
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is devoted to a certain class of doubly nonlinear higher-order anisotropic parabolic equations. Using Galerkin approximations it is proved that the first mixed problem with homogeneous Dirichlet boundary condition
has a strong solution in the cylinder $D=(0,\infty)\times\Omega$, where $\Omega\subset\mathbb R^n$, $n\geqslant 3$, is an unbounded domain. When the initial function has compact support the highest possible rate of decay of this solution as $t\to \infty$ is found. An upper estimate characterizing the decay of the solution is established, which is close to the lower estimate if the domain is  sufficiently ‘narrow’. The same authors have previously obtained results of this type for second order anisotropic parabolic equations.
Bibliography: 29 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
higher-order anisotropic equation, parabolic equation with double nonlinearity, rate of decay of a solution.
Mots-clés : existence of a solution
                    
                  
                
                
                Mots-clés : existence of a solution
@article{SM_2014_205_1_a1,
     author = {L. M. Kozhevnikova and A. A. Leont'ev},
     title = {Solutions to higher-order anisotropic parabolic equations in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {7--44},
     publisher = {mathdoc},
     volume = {205},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_1_a1/}
}
                      
                      
                    TY - JOUR AU - L. M. Kozhevnikova AU - A. A. Leont'ev TI - Solutions to higher-order anisotropic parabolic equations in unbounded domains JO - Sbornik. Mathematics PY - 2014 SP - 7 EP - 44 VL - 205 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_1_a1/ LA - en ID - SM_2014_205_1_a1 ER -
L. M. Kozhevnikova; A. A. Leont'ev. Solutions to higher-order anisotropic parabolic equations in unbounded domains. Sbornik. Mathematics, Tome 205 (2014) no. 1, pp. 7-44. http://geodesic.mathdoc.fr/item/SM_2014_205_1_a1/
