An asymptotic expansion of the solution of a matrix difference equation of general form
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1815-1828 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic expansion of the solution of an inhomogeneous matrix difference equation of general form is obtained. The case when there is no bound on the differences of the arguments is considered. The effect of the roots of the characteristic equation is taken into account. An integral estimate with a submultiplicative weight is established for the remainder in terms of the submultiplicative moment of the free term of the equation. Bibliography: 14 titles.
Keywords: matrix difference equation, unbounded delay, characteristic equation, submultiplicative function, asymptotic behaviour, Banach algebra.
@article{SM_2014_205_12_a7,
     author = {M. S. Sgibnev},
     title = {An asymptotic expansion of the solution of a~matrix difference equation of general form},
     journal = {Sbornik. Mathematics},
     pages = {1815--1828},
     year = {2014},
     volume = {205},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a7/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - An asymptotic expansion of the solution of a matrix difference equation of general form
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1815
EP  - 1828
VL  - 205
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a7/
LA  - en
ID  - SM_2014_205_12_a7
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T An asymptotic expansion of the solution of a matrix difference equation of general form
%J Sbornik. Mathematics
%D 2014
%P 1815-1828
%V 205
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a7/
%G en
%F SM_2014_205_12_a7
M. S. Sgibnev. An asymptotic expansion of the solution of a matrix difference equation of general form. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1815-1828. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a7/

[1] J. Hale, Theory of functional differential equations, Appl. Math. Sci., 3, 2nd ed., Springer-Verlag, New York–Heidelberg, 1977, x+365 pp. | MR | MR | Zbl | Zbl

[2] V. V. Vlasov, S. A. Ivanov, “Estimates for solutions of nonhomogeneous differential-difference equations of neutral type”, Russian Math. (Iz. VUZ), 50:3 (2006), 22–28 | MR | Zbl

[3] A. A. Lesnykh, “Estimates of the solutions of difference-differential equations of neutral type”, Math. Notes, 81:4 (2007), 503–517 | DOI | DOI | MR | Zbl

[4] M. S. Sgibnev, “Asymptotic expansion of the solution of a differential-difference equation of general form”, Differ. Equ., 50:3 (2014), 323–334 | DOI | DOI | Zbl

[5] M. S. Sgibnev, “Behavior at infinity of a solution to a matrix differential-difference equation”, Siberian Math. J., 55:3 (2014), 530–543 | DOI | Zbl

[6] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, R. I., 1957, xii+808 pp. | MR | MR | Zbl

[7] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+636 pp. | MR | MR | Zbl

[8] M. S. Sgibnev, “Submultiplicative moments of the supremum of a random walk with negative drift”, Statist. Probab. Lett., 32:4 (1997), 337–383 | DOI | MR | Zbl

[9] I. Gelfand, D. Raikov, G. Shilov, Commutative normed rings, Chelsea Publishing Co., New York, 1964, 306 pp. | MR | MR | Zbl

[10] M. S. Sgibnev, “Asymptotics of solutions of an integro-differential and an integral equation”, Differ. Equ., 42:9 (2006), 1291–1301 | DOI | MR | Zbl

[11] B. A. Rogozin, M. S. Sgibnev, “Banach algebras of measures on the line”, Siberian Math. J., 21:2 (1980), 265–273 | DOI | MR | Zbl

[12] R. A. Horn, Ch. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985, xiii+561 pp. | DOI | MR | MR | Zbl | Zbl

[13] P. Lancaster, Theory of matrices, Academic Press, New York–London, 1969, xii+316 pp. | MR | MR | Zbl | Zbl

[14] A. I. Markushevich, Teoriya analiticheskikh funktsii, v. 1, 2-e izd., Nauka, M., 1967, 486 pp. | MR | Zbl