Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1787-1814 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study infinitesimal bendings of surfaces of revolution with flattening at the poles. We begin by considering the minimal possible smoothness class $C^1$ both for surfaces and for deformation fields. Conditions are formulated for a given harmonic of a first-order infinitesimal bending to be extendable into a second order infinitesimal bending. We finish by stating a criterion for nonrigidity of second order for closed surfaces of revolution in the analytic class. We also give the first concrete example of such a nonrigid surface. Bibliography: 15 entries.
Keywords: surfaces of revolution, order of flattening, second-order infinitesimal bendings, rigidity.
Mots-clés : pole
@article{SM_2014_205_12_a6,
     author = {I. Kh. Sabitov},
     title = {Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles},
     journal = {Sbornik. Mathematics},
     pages = {1787--1814},
     year = {2014},
     volume = {205},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a6/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1787
EP  - 1814
VL  - 205
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a6/
LA  - en
ID  - SM_2014_205_12_a6
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
%J Sbornik. Mathematics
%D 2014
%P 1787-1814
%V 205
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a6/
%G en
%F SM_2014_205_12_a6
I. Kh. Sabitov. Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1787-1814. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a6/

[1] I. Kh. Sabitov, “Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles”, Sb. Math., 204:10 (2013), 1516–1547 | DOI | DOI | MR | Zbl

[2] I. Ivanova-Karatopraklieva, I. Kh. Sabitov, “Second-order infinitesimal bendings of surfaces of rotation with densification at a pole”, Math. Notes, 45:1 (1989), 19–24 | DOI | MR | Zbl

[3] I. Ivanova-Karatopraklieva, “Infinitesimal bendings of higher order of rotational surfaces”, C. R. Acad. Bulgare Sci., 43:12 (1990), 13–16 | MR | Zbl

[4] I. Ivanova-Karatopraklieva, “Infinitesimal bendings with sliding of higher order of rotational surfaces”, Annuaire Univ. Sofia Fac. Math. Inform., 84:1–2 (1990), 69–82 (Russian) | MR | Zbl

[5] S. E. Kon-Fossen, “Nezhestkie zamknutye poverkhnosti”, UMN, 9:1(59) (1954), 63–81 ; Некоторые вопросы дифференциальной геометрии в целом, Физматгиз, М., 1959, 10–29 ; S. E. Cohn-Vossen, “Unstarre geschlossene Flächen”, Math. Ann., 102:1 (1929), 10–29 | MR | MR | Zbl | DOI | Zbl

[6] N. G. Perlova, I. H. Sabitov, “Second order rigidity of belts of revolution of class $C^2$”, Moscow Univ. Math. Bull., 30:5-6 (1975), 36–40 | MR | Zbl

[7] A. D. Aleksandrov, “Ob odnom klasse zamknutykh poverkhnostei”, Matem. sb., 4(46):1 (1938), 69–77 | Zbl

[8] V. I. Smirnov, A course of higher mathematics, v. III, Complex variables. Special functions, Part 2, Pergamon Press, Oxford–Edinburgh–New York–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., 1964, x+700 pp. | MR | Zbl

[9] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl

[10] I. Kh. Sabitov, “On infinitesimal bendings of troughs of revolution. I”, Math. USSR-Sb., 27:1 (1975), 103–117 | DOI | MR | Zbl

[11] I. Kh. Sabitov, “On infinitesimal bendings of troughs of revolution. II”, Math. USSR-Sb., 28:1 (1976), 41–48 | DOI | MR | Zbl

[12] E. G. Poznyak, “Sootnoshenie mezhdu nezhestkostyu pervogo i vtorogo poryadka dlya poverkhnostei vrascheniya”, UMN, 14:6(90) (1959), 179–184 | MR | Zbl

[13] A. Yu. Nesterenko, “Determination of integer solutions of a system of simultaneous Pell equations”, Math. Notes, 86:4 (2009), 556–566 | DOI | DOI | MR | Zbl

[14] I. Kh. Sabitov, “A study of the rigidity and inflexibility of analytic surfaces of revolution with flattening at the pole”, Moscow Univ. Math. Bull., 41:5 (1986), 33–41 | MR | Zbl

[15] E. G. Poznyak, “O nezhestkosti vtorogo poryadka”, UMN, 16:1(97) (1961), 157–161 | MR | Zbl