Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1787-1814

Voir la notice de l'article provenant de la source Math-Net.Ru

We study infinitesimal bendings of surfaces of revolution with flattening at the poles. We begin by considering the minimal possible smoothness class $C^1$ both for surfaces and for deformation fields. Conditions are formulated for a given harmonic of a first-order infinitesimal bending to be extendable into a second order infinitesimal bending. We finish by stating a criterion for nonrigidity of second order for closed surfaces of revolution in the analytic class. We also give the first concrete example of such a nonrigid surface. Bibliography: 15 entries.
Keywords: surfaces of revolution, order of flattening, second-order infinitesimal bendings, rigidity.
Mots-clés : pole
@article{SM_2014_205_12_a6,
     author = {I. Kh. Sabitov},
     title = {Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles},
     journal = {Sbornik. Mathematics},
     pages = {1787--1814},
     publisher = {mathdoc},
     volume = {205},
     number = {12},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a6/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1787
EP  - 1814
VL  - 205
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a6/
LA  - en
ID  - SM_2014_205_12_a6
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
%J Sbornik. Mathematics
%D 2014
%P 1787-1814
%V 205
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a6/
%G en
%F SM_2014_205_12_a6
I. Kh. Sabitov. Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1787-1814. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a6/