Convexity properties of images under nonlinear integral operators
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1775-1786

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are obtained for the image of a given set under a general completely continuous nonlinear integral operator to have convex closure. These results are used to establish the uniqueness of quasi-solutions of nonlinear integral equations of the first kind and to prove the solvability of equations of the first kind on a dense subset of the right-hand sides. Bibliography: 11 titles.
Keywords: nonlinear integral operator, image of a set, closure, convexity, equation of the first kind.
@article{SM_2014_205_12_a5,
     author = {M. Yu. Kokurin},
     title = {Convexity properties of images under nonlinear integral operators},
     journal = {Sbornik. Mathematics},
     pages = {1775--1786},
     publisher = {mathdoc},
     volume = {205},
     number = {12},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a5/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Convexity properties of images under nonlinear integral operators
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1775
EP  - 1786
VL  - 205
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a5/
LA  - en
ID  - SM_2014_205_12_a5
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Convexity properties of images under nonlinear integral operators
%J Sbornik. Mathematics
%D 2014
%P 1775-1786
%V 205
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a5/
%G en
%F SM_2014_205_12_a5
M. Yu. Kokurin. Convexity properties of images under nonlinear integral operators. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1775-1786. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a5/