A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1761-1774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a certain model operator acting in a subspace of a fermionic Fock space. We obtain an analogue of Faddeev's equation. We describe the location of the essential spectrum of the operator under consideration and show that the essential spectrum consists of the union of at most four segments. Bibliography: 19 titles.
Keywords: Hamiltonian with a nonconserved bounded number of particles, creation–annihilation operators, essential spectrum, positive operator, Faddeev's equation, compact operator.
@article{SM_2014_205_12_a4,
     author = {G. R. Yodgorov and F. Ismail and Z. I. Muminov},
     title = {A~description of the location and structure of the essential spectrum of a~model operator in a~subspace of {a~Fock} space},
     journal = {Sbornik. Mathematics},
     pages = {1761--1774},
     year = {2014},
     volume = {205},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/}
}
TY  - JOUR
AU  - G. R. Yodgorov
AU  - F. Ismail
AU  - Z. I. Muminov
TI  - A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1761
EP  - 1774
VL  - 205
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/
LA  - en
ID  - SM_2014_205_12_a4
ER  - 
%0 Journal Article
%A G. R. Yodgorov
%A F. Ismail
%A Z. I. Muminov
%T A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space
%J Sbornik. Mathematics
%D 2014
%P 1761-1774
%V 205
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/
%G en
%F SM_2014_205_12_a4
G. R. Yodgorov; F. Ismail; Z. I. Muminov. A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1761-1774. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/

[1] R. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in statistical and theoretical physics, Amer. Math. Soc. Transl. Ser. 2, 177, Amer. Math. Soc., Providence, RI, 1996, 159–193 | MR | Zbl

[2] D. C. Mattis, “The few-body problem on a lattice”, Rev. Modern Phys., 58 (1986), 361–379 | DOI | MR

[3] A. Mogil'ner, “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: spectra and scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR | Zbl

[4] K. O. Friedrichs, Perturbation of spectra in Hilbert space, Lectures in Appl. Math., 3, Amer. Math. Soc., Providence, R.I., 1965, xiii+178 pp. | MR | Zbl

[5] Ch. Buhler, S. Yunoki, A. Moreo, “Magnetic domains and stripes in a spin-fermion model for cuprates”, Phys. Rev. Lett., 84:12 (2000), 2690–2693 | DOI

[6] V. A. Malyshev, R. A. Minlos, “Klastepnye opepatopy”, Tp. seminapa im. I. G. Petpovskogo, 1983, no. 9, 63–80 | MR | Zbl

[7] S. Albeverio, S. N. Lakaev, T. H. Rasulov, “On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics”, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | MR | Zbl

[8] S. Albeverio, S. N. Lakaev, T. H. Rasulov, “The Efimov effect for a model operator associated with the Hamiltonian of a non conserved number of particles”, Methods Funct. Anal. Topology, 13:1 (2007), 1–16 | MR | Zbl

[9] S. N. Lakaev, T. Kh. Rasulov, “A model in the theory of perturbations of the essential spectrum of multiparticle operators”, Math. Notes, 73:4 (2003), 521–528 | DOI | DOI | MR | Zbl

[10] S. N. Lakaev, T. Kh. Rasulov, “Efimov's effect in a model of perturbation theory of the essential spectrum”, Funct. Anal. Appl., 37:1 (2003), 69–71 | DOI | DOI | MR | Zbl

[11] G. R. Yodgorov, M. I. Muminov, “Spectrum of a model operator in the perturbation theory of the essential spectrum”, Theoret. and Math. Phys., 144:3 (2005), 1344–1352 | DOI | DOI | MR | Zbl

[12] T. Kh. Rasulov, “Study of the essential spectrum of a matrix operator”, Theoret. and Math. Phys., 164:1 (2010), 883–895 | DOI | DOI | Zbl

[13] T. H. Rasulov, “Investigations of the essential spectrum of a Hamiltonian in Fock space”, Appl. Math. Inf. Sci., 4:3 (2010), 345–412 | MR

[14] Yu. V. Zhukov, R. A. Minlos, “Spectrum and scattering in a model “spin-boson” with not more than three photons”, Theoret. and Math. Phys., 103:1 (1995), 398–411 | DOI | MR | Zbl

[15] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York–London, 1972, xvii+325 pp. | MR | MR | Zbl

[16] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl

[17] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl

[18] L. D. Faddeev, Mathematical aspects of the three-body problem in the quantum scattering theory, IPST, Jerusalem; Daniel Davey Co., Inc., New York, 1965, iii+110 pp. | MR | MR | Zbl | Zbl

[19] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts Monogr. Phys., Springer-Verlag, New York, 1988, xiv+452 pp. | DOI | MR | MR | Zbl