A~description of the location and structure of the essential spectrum of a~model operator in a~subspace of a~Fock space
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1761-1774

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a certain model operator acting in a subspace of a fermionic Fock space. We obtain an analogue of Faddeev's equation. We describe the location of the essential spectrum of the operator under consideration and show that the essential spectrum consists of the union of at most four segments. Bibliography: 19 titles.
Keywords: Hamiltonian with a nonconserved bounded number of particles, creation–annihilation operators, essential spectrum, positive operator, Faddeev's equation, compact operator.
@article{SM_2014_205_12_a4,
     author = {G. R. Yodgorov and F. Ismail and Z. I. Muminov},
     title = {A~description of the location and structure of the essential spectrum of a~model operator in a~subspace of {a~Fock} space},
     journal = {Sbornik. Mathematics},
     pages = {1761--1774},
     publisher = {mathdoc},
     volume = {205},
     number = {12},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/}
}
TY  - JOUR
AU  - G. R. Yodgorov
AU  - F. Ismail
AU  - Z. I. Muminov
TI  - A~description of the location and structure of the essential spectrum of a~model operator in a~subspace of a~Fock space
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1761
EP  - 1774
VL  - 205
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/
LA  - en
ID  - SM_2014_205_12_a4
ER  - 
%0 Journal Article
%A G. R. Yodgorov
%A F. Ismail
%A Z. I. Muminov
%T A~description of the location and structure of the essential spectrum of a~model operator in a~subspace of a~Fock space
%J Sbornik. Mathematics
%D 2014
%P 1761-1774
%V 205
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/
%G en
%F SM_2014_205_12_a4
G. R. Yodgorov; F. Ismail; Z. I. Muminov. A~description of the location and structure of the essential spectrum of a~model operator in a~subspace of a~Fock space. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1761-1774. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/