@article{SM_2014_205_12_a4,
author = {G. R. Yodgorov and F. Ismail and Z. I. Muminov},
title = {A~description of the location and structure of the essential spectrum of a~model operator in a~subspace of {a~Fock} space},
journal = {Sbornik. Mathematics},
pages = {1761--1774},
year = {2014},
volume = {205},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/}
}
TY - JOUR AU - G. R. Yodgorov AU - F. Ismail AU - Z. I. Muminov TI - A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space JO - Sbornik. Mathematics PY - 2014 SP - 1761 EP - 1774 VL - 205 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/ LA - en ID - SM_2014_205_12_a4 ER -
%0 Journal Article %A G. R. Yodgorov %A F. Ismail %A Z. I. Muminov %T A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space %J Sbornik. Mathematics %D 2014 %P 1761-1774 %V 205 %N 12 %U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/ %G en %F SM_2014_205_12_a4
G. R. Yodgorov; F. Ismail; Z. I. Muminov. A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1761-1774. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a4/
[1] R. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in statistical and theoretical physics, Amer. Math. Soc. Transl. Ser. 2, 177, Amer. Math. Soc., Providence, RI, 1996, 159–193 | MR | Zbl
[2] D. C. Mattis, “The few-body problem on a lattice”, Rev. Modern Phys., 58 (1986), 361–379 | DOI | MR
[3] A. Mogil'ner, “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: spectra and scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR | Zbl
[4] K. O. Friedrichs, Perturbation of spectra in Hilbert space, Lectures in Appl. Math., 3, Amer. Math. Soc., Providence, R.I., 1965, xiii+178 pp. | MR | Zbl
[5] Ch. Buhler, S. Yunoki, A. Moreo, “Magnetic domains and stripes in a spin-fermion model for cuprates”, Phys. Rev. Lett., 84:12 (2000), 2690–2693 | DOI
[6] V. A. Malyshev, R. A. Minlos, “Klastepnye opepatopy”, Tp. seminapa im. I. G. Petpovskogo, 1983, no. 9, 63–80 | MR | Zbl
[7] S. Albeverio, S. N. Lakaev, T. H. Rasulov, “On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics”, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | MR | Zbl
[8] S. Albeverio, S. N. Lakaev, T. H. Rasulov, “The Efimov effect for a model operator associated with the Hamiltonian of a non conserved number of particles”, Methods Funct. Anal. Topology, 13:1 (2007), 1–16 | MR | Zbl
[9] S. N. Lakaev, T. Kh. Rasulov, “A model in the theory of perturbations of the essential spectrum of multiparticle operators”, Math. Notes, 73:4 (2003), 521–528 | DOI | DOI | MR | Zbl
[10] S. N. Lakaev, T. Kh. Rasulov, “Efimov's effect in a model of perturbation theory of the essential spectrum”, Funct. Anal. Appl., 37:1 (2003), 69–71 | DOI | DOI | MR | Zbl
[11] G. R. Yodgorov, M. I. Muminov, “Spectrum of a model operator in the perturbation theory of the essential spectrum”, Theoret. and Math. Phys., 144:3 (2005), 1344–1352 | DOI | DOI | MR | Zbl
[12] T. Kh. Rasulov, “Study of the essential spectrum of a matrix operator”, Theoret. and Math. Phys., 164:1 (2010), 883–895 | DOI | DOI | Zbl
[13] T. H. Rasulov, “Investigations of the essential spectrum of a Hamiltonian in Fock space”, Appl. Math. Inf. Sci., 4:3 (2010), 345–412 | MR
[14] Yu. V. Zhukov, R. A. Minlos, “Spectrum and scattering in a model “spin-boson” with not more than three photons”, Theoret. and Math. Phys., 103:1 (1995), 398–411 | DOI | MR | Zbl
[15] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York–London, 1972, xvii+325 pp. | MR | MR | Zbl
[16] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl
[17] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl
[18] L. D. Faddeev, Mathematical aspects of the three-body problem in the quantum scattering theory, IPST, Jerusalem; Daniel Davey Co., Inc., New York, 1965, iii+110 pp. | MR | MR | Zbl | Zbl
[19] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts Monogr. Phys., Springer-Verlag, New York, 1988, xiv+452 pp. | DOI | MR | MR | Zbl