@article{SM_2014_205_12_a3,
author = {L. A. Beklaryan},
title = {Groups of homeomorphisms of the line. {Criteria} for the existence of invariant and projectively invariant measures in terms of the commutator subgroup},
journal = {Sbornik. Mathematics},
pages = {1741--1760},
year = {2014},
volume = {205},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a3/}
}
TY - JOUR AU - L. A. Beklaryan TI - Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup JO - Sbornik. Mathematics PY - 2014 SP - 1741 EP - 1760 VL - 205 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a3/ LA - en ID - SM_2014_205_12_a3 ER -
%0 Journal Article %A L. A. Beklaryan %T Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup %J Sbornik. Mathematics %D 2014 %P 1741-1760 %V 205 %N 12 %U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a3/ %G en %F SM_2014_205_12_a3
L. A. Beklaryan. Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1741-1760. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a3/
[1] S. P. Novikov, “Topology of foliations”, Trans. Moscow Math. Soc., 14, Amer. Math. Soc., Providence, RI, 1965, 268–304 | MR | Zbl
[2] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto, Ont.–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl
[3] L. V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures Math., Univ. Minnesota, School of Mathematics, Minneapolis, Minn., 1981, ii+150 pp. | MR | MR | Zbl | Zbl
[4] M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544 | MR | Zbl
[5] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., New York–Toronto, Ont.–London, 1969, ix+113 pp. | MR | Zbl | Zbl
[6] V. V. Solodov, “Homeomorphisms of the circle and a foliation”, Math. USSR-Izv., 24:3 (1985), 553–566 | DOI | MR | Zbl
[7] L. A. Beklaryan, “A variational problem with retarded argument and its relation to some semigroup of mappings of a segment into itself”, Soviet Math. Dokl., 28:1 (1983), 1036–1040 | MR | Zbl
[8] L. A. Beklaryan, “An optimal control problem for systems with deviating argument and its connection with the finitely generated group of homeomorphisms of $R$ generated by deviation functions”, Soviet Math. Dokl., 43:2 (1991), 600–605 | MR | Zbl
[9] L. A. Beklaryan, “On a criterion for the topological conjugacy of a quasisymmetric group to a group of affine transformations of $\mathbb R$”, Sb. Math., 191:6 (2000), 809–819 | DOI | DOI | MR | Zbl
[10] L. A. Beklaryan, “About canonical types of the differential equations with deviating argument”, Funct. Differ. Equ., 8:1-2 (2001), 25–33 | MR | Zbl
[11] L. A. Beklaryan, Vvedenie v teoriyu funktsinalno-differentsialnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007, 288 pp.
[12] Yu. I. Karlovich, “$C^*$-algebras of operators of convolution type with discrete groups of shifts and with oscillating coefficients”, Soviet Math. Dokl., 38:2 (1989), 301–307 | MR | Zbl
[13] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. I. Invariant measures”, Sb. Math., 187:3 (1996), 335–364 | DOI | DOI | MR | Zbl
[14] L. A. Beklaryan, “A criterion connected with the structure of the fixed-point set for the existence of a projectively invariant measure for groups of orientation-preserving homeomorphisms of $\mathbb R$”, Russian Math. Surveys, 51:3 (1996), 539–540 | DOI | DOI | MR | Zbl
[15] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. II. Projectively-invariant measures”, Sb. Math., 187:4 (1996), 469–494 | DOI | DOI | MR | Zbl
[16] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures”, Sb. Math., 190:4 (1999), 521–538 | DOI | DOI | MR | Zbl
[17] L. A. Beklaryan, “Groups of homeomorphisms of the line and the circle. Topological characteristics and metric invariants”, Russian Math. Surveys, 59:4 (2004), 599–660 | DOI | DOI | MR | Zbl
[18] J. F. Plante, “Foliations with measure preserving holonomy”, Ann. of Math. (2), 102:2 (1975), 327–361 | DOI | MR | Zbl
[19] L. A. Beklaryan, “On analogs of the Tits alternative for groups of homeomorphisms of the circle and of the line”, Math. Notes, 71:3 (2002), 305–315 | DOI | DOI | MR | Zbl
[20] J. F. Plante, “Solvable groups acting on the line”, Trans. Amer. Math. Soc., 278:1 (1983), 401–414 | DOI | MR | Zbl