Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1741-1760 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Existence criteria for invariant and projectively invariant measures are obtained for a group $G$ of homeomorphisms of the line. These criteria are formulated in terms of the commutator subgroup $[G,G]$. For the special (but very important) case of groups of homeomorphisms of the line containing a freely acting element we obtain a criterion for the existence of a projectively invariant measure in the form of the absence of a special subgroup with two generators in which one of the generating elements is a freely acting element. Bibliography: 20 titles.
Keywords: groups of homeomorphisms of the line (the circle), invariant measure, projectively invariant measures.
@article{SM_2014_205_12_a3,
     author = {L. A. Beklaryan},
     title = {Groups of homeomorphisms of the line. {Criteria} for the existence of invariant and projectively invariant measures in terms of the commutator subgroup},
     journal = {Sbornik. Mathematics},
     pages = {1741--1760},
     year = {2014},
     volume = {205},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a3/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1741
EP  - 1760
VL  - 205
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a3/
LA  - en
ID  - SM_2014_205_12_a3
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup
%J Sbornik. Mathematics
%D 2014
%P 1741-1760
%V 205
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a3/
%G en
%F SM_2014_205_12_a3
L. A. Beklaryan. Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1741-1760. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a3/

[1] S. P. Novikov, “Topology of foliations”, Trans. Moscow Math. Soc., 14, Amer. Math. Soc., Providence, RI, 1965, 268–304 | MR | Zbl

[2] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto, Ont.–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl

[3] L. V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures Math., Univ. Minnesota, School of Mathematics, Minneapolis, Minn., 1981, ii+150 pp. | MR | MR | Zbl | Zbl

[4] M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544 | MR | Zbl

[5] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., New York–Toronto, Ont.–London, 1969, ix+113 pp. | MR | Zbl | Zbl

[6] V. V. Solodov, “Homeomorphisms of the circle and a foliation”, Math. USSR-Izv., 24:3 (1985), 553–566 | DOI | MR | Zbl

[7] L. A. Beklaryan, “A variational problem with retarded argument and its relation to some semigroup of mappings of a segment into itself”, Soviet Math. Dokl., 28:1 (1983), 1036–1040 | MR | Zbl

[8] L. A. Beklaryan, “An optimal control problem for systems with deviating argument and its connection with the finitely generated group of homeomorphisms of $R$ generated by deviation functions”, Soviet Math. Dokl., 43:2 (1991), 600–605 | MR | Zbl

[9] L. A. Beklaryan, “On a criterion for the topological conjugacy of a quasisymmetric group to a group of affine transformations of $\mathbb R$”, Sb. Math., 191:6 (2000), 809–819 | DOI | DOI | MR | Zbl

[10] L. A. Beklaryan, “About canonical types of the differential equations with deviating argument”, Funct. Differ. Equ., 8:1-2 (2001), 25–33 | MR | Zbl

[11] L. A. Beklaryan, Vvedenie v teoriyu funktsinalno-differentsialnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007, 288 pp.

[12] Yu. I. Karlovich, “$C^*$-algebras of operators of convolution type with discrete groups of shifts and with oscillating coefficients”, Soviet Math. Dokl., 38:2 (1989), 301–307 | MR | Zbl

[13] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. I. Invariant measures”, Sb. Math., 187:3 (1996), 335–364 | DOI | DOI | MR | Zbl

[14] L. A. Beklaryan, “A criterion connected with the structure of the fixed-point set for the existence of a projectively invariant measure for groups of orientation-preserving homeomorphisms of $\mathbb R$”, Russian Math. Surveys, 51:3 (1996), 539–540 | DOI | DOI | MR | Zbl

[15] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. II. Projectively-invariant measures”, Sb. Math., 187:4 (1996), 469–494 | DOI | DOI | MR | Zbl

[16] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures”, Sb. Math., 190:4 (1999), 521–538 | DOI | DOI | MR | Zbl

[17] L. A. Beklaryan, “Groups of homeomorphisms of the line and the circle. Topological characteristics and metric invariants”, Russian Math. Surveys, 59:4 (2004), 599–660 | DOI | DOI | MR | Zbl

[18] J. F. Plante, “Foliations with measure preserving holonomy”, Ann. of Math. (2), 102:2 (1975), 327–361 | DOI | MR | Zbl

[19] L. A. Beklaryan, “On analogs of the Tits alternative for groups of homeomorphisms of the circle and of the line”, Math. Notes, 71:3 (2002), 305–315 | DOI | DOI | MR | Zbl

[20] J. F. Plante, “Solvable groups acting on the line”, Trans. Amer. Math. Soc., 278:1 (1983), 401–414 | DOI | MR | Zbl