The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1696-1719 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recurrence relations generating Padé and Hermite-Padé polynomials are considered. Their coefficients increase with the index of the relation, but after dividing by an appropriate power of the scaling function they tend to a finite limit. As a result, after scaling the polynomials ‘stabilize’ for large indices; this type of asymptotic behaviour is called Plancherel-Rotach asymptotics. An explicit expression for the leading term of the asymptotic formula, which is valid outside sets containing the zeros of the polynomials, is obtained for wide classes of three- and four-term relations. For three-term recurrence relations this result generalizes a theorem Van Assche obtained for recurrence relations with ‘regularly’ growing coefficients. Bibliography: 19 titles.
Keywords: high-order recurrence relations, difference operators.
Mots-clés : multiple orthogonal polynomials, Hermite-Padé approximants
@article{SM_2014_205_12_a1,
     author = {A. I. Aptekarev and D. N. Tulyakov},
     title = {The leading term of the {Plancherel-Rotach} asymptotic formula for solutions of recurrence relations},
     journal = {Sbornik. Mathematics},
     pages = {1696--1719},
     year = {2014},
     volume = {205},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - D. N. Tulyakov
TI  - The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1696
EP  - 1719
VL  - 205
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/
LA  - en
ID  - SM_2014_205_12_a1
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A D. N. Tulyakov
%T The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations
%J Sbornik. Mathematics
%D 2014
%P 1696-1719
%V 205
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/
%G en
%F SM_2014_205_12_a1
A. I. Aptekarev; D. N. Tulyakov. The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1696-1719. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/

[1] A. I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1-2 (1998), 423–447 | DOI | MR | Zbl

[2] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl

[3] H. Poincaré, “Sur les equations linéaires aux différentielles ordinaires et aux différences finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR | Zbl

[4] A. O. Gel'fond, Differenzenrechnung, Hochschulbucher fur Math., 41, VEB Deutscher Verlag der Wissenschaften, Berlin, 1958, viii+336 pp. | MR | MR | Zbl | Zbl

[5] V. I. Buslaev, “Poincaré's theorem and its applications to the convergence of continued fractions”, Sb. Math., 189:12 (1998), 1749–1764 | DOI | DOI | MR | Zbl

[6] M. Plancherel, W. Rotach, “Sur les valeures asymptotiques des polynomes d'Hermite $H_n(x)=(-I)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n}\Bigl(e^{-\frac{x^2}{2}}\Bigr)$”, Comment. Math. Helv., 1 (1929), 227–257 | DOI | MR | Zbl

[7] D. N. Tulyakov, “Plancherel–Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients”, Sb. Math., 201:9 (2010), 1355–1402 | DOI | DOI | MR | Zbl

[8] A. I. Aptekarev, D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels”, Trans. Moscow Math. Soc., 2012, 2012, 67–106 | DOI | MR | Zbl

[9] P. G. Nevai, J. S. Dehesa, “On asymptotic average properties of zeros of orthogonal polynomials”, SIAM J. Math. Anal., 10:6 (1979), 1184–1192 | DOI | MR | Zbl

[10] W. Van Assche, Asymptotics for orthogonal polynomials, Lecture Notes in Math., 1265, Springer-Verlag, Berlin, 1987, vi+201 pp. | DOI | MR | Zbl

[11] W. Van Assche, “Asymptotic properties of orthogonal polynomials from their recurrence formula. II”, J. Approx. Theory, 52:3 (1988), 322–338 | DOI | MR | Zbl

[12] W. Van Assche, J. S. Geronimo, “Asymptotics for orthogonal polynomials with regularly varying recurrence coefficients”, Rocky Mountain J. Math., 19:1 (1989), 39–49 | DOI | MR | Zbl

[13] A. I. Aptekarev, D. N. Tulyakov, “Glavnyi chlen asimptotiki reshenii chetyrekhchlennykh rekursii”, Preprinty IPM, 2013, 001, 20 pp.

[14] A. I. Aptekarev, G. López Lagomasino, I. A. Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems”, Sb. Math., 196:8 (2005), 1089–1107 | DOI | DOI | MR | Zbl

[15] A. I. Aptekarev, W. Van Assche, “Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice”, J. Phys. A, 34:48 (2001), 10627–10637 | DOI | MR | Zbl

[16] A. Aptekarev, J. Arvesú, “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411:2 (2014), 485–505 | DOI | MR

[17] J. Arvesú, J. Coussement, W. Van Assche, “Some discrete multiple orthogonal polynomials”, J. Comput. Appl. Math., 153:1-2 (2003), 19–45 | DOI | MR | Zbl

[18] V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561 | DOI | DOI | MR | Zbl

[19] W. Van Assche, “Nearest neighbor recurrence relations for multiple orthogonal polynomials”, J. Approx. Theory, 163:10 (2011), 1427–1448 | DOI | MR | Zbl