Mots-clés : multiple orthogonal polynomials, Hermite-Padé approximants
@article{SM_2014_205_12_a1,
author = {A. I. Aptekarev and D. N. Tulyakov},
title = {The leading term of the {Plancherel-Rotach} asymptotic formula for solutions of recurrence relations},
journal = {Sbornik. Mathematics},
pages = {1696--1719},
year = {2014},
volume = {205},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/}
}
TY - JOUR AU - A. I. Aptekarev AU - D. N. Tulyakov TI - The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations JO - Sbornik. Mathematics PY - 2014 SP - 1696 EP - 1719 VL - 205 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/ LA - en ID - SM_2014_205_12_a1 ER -
A. I. Aptekarev; D. N. Tulyakov. The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1696-1719. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/
[1] A. I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1-2 (1998), 423–447 | DOI | MR | Zbl
[2] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl
[3] H. Poincaré, “Sur les equations linéaires aux différentielles ordinaires et aux différences finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR | Zbl
[4] A. O. Gel'fond, Differenzenrechnung, Hochschulbucher fur Math., 41, VEB Deutscher Verlag der Wissenschaften, Berlin, 1958, viii+336 pp. | MR | MR | Zbl | Zbl
[5] V. I. Buslaev, “Poincaré's theorem and its applications to the convergence of continued fractions”, Sb. Math., 189:12 (1998), 1749–1764 | DOI | DOI | MR | Zbl
[6] M. Plancherel, W. Rotach, “Sur les valeures asymptotiques des polynomes d'Hermite $H_n(x)=(-I)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n}\Bigl(e^{-\frac{x^2}{2}}\Bigr)$”, Comment. Math. Helv., 1 (1929), 227–257 | DOI | MR | Zbl
[7] D. N. Tulyakov, “Plancherel–Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients”, Sb. Math., 201:9 (2010), 1355–1402 | DOI | DOI | MR | Zbl
[8] A. I. Aptekarev, D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels”, Trans. Moscow Math. Soc., 2012, 2012, 67–106 | DOI | MR | Zbl
[9] P. G. Nevai, J. S. Dehesa, “On asymptotic average properties of zeros of orthogonal polynomials”, SIAM J. Math. Anal., 10:6 (1979), 1184–1192 | DOI | MR | Zbl
[10] W. Van Assche, Asymptotics for orthogonal polynomials, Lecture Notes in Math., 1265, Springer-Verlag, Berlin, 1987, vi+201 pp. | DOI | MR | Zbl
[11] W. Van Assche, “Asymptotic properties of orthogonal polynomials from their recurrence formula. II”, J. Approx. Theory, 52:3 (1988), 322–338 | DOI | MR | Zbl
[12] W. Van Assche, J. S. Geronimo, “Asymptotics for orthogonal polynomials with regularly varying recurrence coefficients”, Rocky Mountain J. Math., 19:1 (1989), 39–49 | DOI | MR | Zbl
[13] A. I. Aptekarev, D. N. Tulyakov, “Glavnyi chlen asimptotiki reshenii chetyrekhchlennykh rekursii”, Preprinty IPM, 2013, 001, 20 pp.
[14] A. I. Aptekarev, G. López Lagomasino, I. A. Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems”, Sb. Math., 196:8 (2005), 1089–1107 | DOI | DOI | MR | Zbl
[15] A. I. Aptekarev, W. Van Assche, “Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice”, J. Phys. A, 34:48 (2001), 10627–10637 | DOI | MR | Zbl
[16] A. Aptekarev, J. Arvesú, “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411:2 (2014), 485–505 | DOI | MR
[17] J. Arvesú, J. Coussement, W. Van Assche, “Some discrete multiple orthogonal polynomials”, J. Comput. Appl. Math., 153:1-2 (2003), 19–45 | DOI | MR | Zbl
[18] V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561 | DOI | DOI | MR | Zbl
[19] W. Van Assche, “Nearest neighbor recurrence relations for multiple orthogonal polynomials”, J. Approx. Theory, 163:10 (2011), 1427–1448 | DOI | MR | Zbl