The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1696-1719
Voir la notice de l'article provenant de la source Math-Net.Ru
Recurrence relations generating Padé and Hermite-Padé polynomials are considered. Their coefficients increase with the index of the relation, but after dividing by an appropriate power of the scaling function they tend to a finite limit. As a result, after scaling the polynomials ‘stabilize’ for large indices; this type of asymptotic
behaviour is called Plancherel-Rotach asymptotics. An explicit expression for the leading term of the asymptotic formula, which is valid outside sets containing the zeros of the polynomials, is obtained for wide classes of three- and four-term relations. For three-term recurrence relations this result generalizes a theorem Van Assche obtained for recurrence relations with ‘regularly’ growing coefficients.
Bibliography: 19 titles.
Keywords:
high-order recurrence relations, difference operators.
Mots-clés : multiple orthogonal polynomials, Hermite-Padé approximants
Mots-clés : multiple orthogonal polynomials, Hermite-Padé approximants
@article{SM_2014_205_12_a1,
author = {A. I. Aptekarev and D. N. Tulyakov},
title = {The leading term of the {Plancherel-Rotach} asymptotic formula for solutions of recurrence relations},
journal = {Sbornik. Mathematics},
pages = {1696--1719},
publisher = {mathdoc},
volume = {205},
number = {12},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/}
}
TY - JOUR AU - A. I. Aptekarev AU - D. N. Tulyakov TI - The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations JO - Sbornik. Mathematics PY - 2014 SP - 1696 EP - 1719 VL - 205 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/ LA - en ID - SM_2014_205_12_a1 ER -
%0 Journal Article %A A. I. Aptekarev %A D. N. Tulyakov %T The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations %J Sbornik. Mathematics %D 2014 %P 1696-1719 %V 205 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/ %G en %F SM_2014_205_12_a1
A. I. Aptekarev; D. N. Tulyakov. The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1696-1719. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a1/