Existence of standard models of conic fibrations over non-algebraically-closed fields
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1683-1695 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an analogue of Sarkisov's theorem on the existence of a standard model of a conic fibration over an algebraically closed field of characteristic different from two for three-dimensional conic fibrations over an arbitrary field of characteristic zero with an action of a finite group. Bibliography: 16 titles.
Keywords: conic fibration, Sarkisov link, minimal model programme
Mots-clés : birational model.
@article{SM_2014_205_12_a0,
     author = {A. A. Avilov},
     title = {Existence of standard models of conic fibrations over non-algebraically-closed fields},
     journal = {Sbornik. Mathematics},
     pages = {1683--1695},
     year = {2014},
     volume = {205},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a0/}
}
TY  - JOUR
AU  - A. A. Avilov
TI  - Existence of standard models of conic fibrations over non-algebraically-closed fields
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1683
EP  - 1695
VL  - 205
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a0/
LA  - en
ID  - SM_2014_205_12_a0
ER  - 
%0 Journal Article
%A A. A. Avilov
%T Existence of standard models of conic fibrations over non-algebraically-closed fields
%J Sbornik. Mathematics
%D 2014
%P 1683-1695
%V 205
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a0/
%G en
%F SM_2014_205_12_a0
A. A. Avilov. Existence of standard models of conic fibrations over non-algebraically-closed fields. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1683-1695. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a0/

[1] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl

[2] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, xxiv+478 pp. | DOI | MR | Zbl

[3] V. A. Iskovskikh, “Rational surfaces with a pencil of rational curves”, Math. USSR-Sb., 3:4 (1967), 563–587 | DOI | MR | Zbl

[4] V. G. Sarkisov, “On conic bundle structures”, Math. USSR-Izv., 20:2 (1983), 355–390 | DOI | MR | Zbl

[5] A. A. Zagorskii, “Three-dimensional conical fibrations”, Math. Notes, 21:6 (1977), 420–427 | DOI | MR | Zbl

[6] Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank 3”, J. Algebraic Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl

[7] Yu. G. Prokhorov, “On birational involutions of $\mathbb P^3$”, Izv. Math., 77:3 (2013), 627–648 | DOI | DOI | MR | Zbl

[8] A. Beauville, “Variétés de Prym et jacobiennes intermédiaires”, Ann. Sci. École Norm. Sup. (4), 10:3 (1977), 309–391 | MR | Zbl

[9] V. Alexeev, “General elephants on $\mathbb{Q}$-Fano 3-folds”, Compositio Math., 91:1 (1994), 91–116 | MR | Zbl

[10] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl

[11] S. Mori, Yu. Prokhorov, “On $\mathbb{Q}$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369 | DOI | MR | Zbl

[12] E. Bierstone, P. D. Milman, “A simple constructive proof of canonical resolution of singularities”, Effective methods in algebraic geometry (Castiglioncello, 1990), Progr. Math., 94, Birkhäuser, Boston, MA, 1991, 11–30 | DOI | MR | Zbl

[13] D. R. Morrison, “The birational geometry of surfaces with rational double points”, Math. Ann., 271:3 (1985), 415–438 | DOI | MR | Zbl

[14] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl

[15] S. Mori, “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math. (2), 116:1 (1982), 133–176 | DOI | MR | Zbl

[16] J. Kollár, “Flops”, Nagoya Math. J., 113 (1989), 15–36 | MR | Zbl