Existence of standard models of conic fibrations over non-algebraically-closed fields
Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1683-1695

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of Sarkisov's theorem on the existence of a standard model of a conic fibration over an algebraically closed field of characteristic different from two for three-dimensional conic fibrations over an arbitrary field of characteristic zero with an action of a finite group. Bibliography: 16 titles.
Keywords: conic fibration, Sarkisov link, minimal model programme
Mots-clés : birational model.
@article{SM_2014_205_12_a0,
     author = {A. A. Avilov},
     title = {Existence of standard models of conic fibrations over non-algebraically-closed fields},
     journal = {Sbornik. Mathematics},
     pages = {1683--1695},
     publisher = {mathdoc},
     volume = {205},
     number = {12},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_12_a0/}
}
TY  - JOUR
AU  - A. A. Avilov
TI  - Existence of standard models of conic fibrations over non-algebraically-closed fields
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1683
EP  - 1695
VL  - 205
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_12_a0/
LA  - en
ID  - SM_2014_205_12_a0
ER  - 
%0 Journal Article
%A A. A. Avilov
%T Existence of standard models of conic fibrations over non-algebraically-closed fields
%J Sbornik. Mathematics
%D 2014
%P 1683-1695
%V 205
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_12_a0/
%G en
%F SM_2014_205_12_a0
A. A. Avilov. Existence of standard models of conic fibrations over non-algebraically-closed fields. Sbornik. Mathematics, Tome 205 (2014) no. 12, pp. 1683-1695. http://geodesic.mathdoc.fr/item/SM_2014_205_12_a0/