The symmetry groups of bifurcations of integrable Hamiltonian systems
Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1668-1682

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional atoms are investigated; these are used to code bifurcations of the Liouville foliations of nondegenerate integrable Hamiltonian systems. To be precise, the symmetry groups of atoms with complexity at most 3 are under study. Atoms with symmetry group $\mathbb Z_p\oplus\mathbb Z_q$ are considered. It is proved that $\mathbb Z_p\oplus\mathbb Z_q$ is the symmetry group of a toric atom. The symmetry groups of all nonorientable atoms with complexity at most 3 are calculated. The concept of a geodesic atom is introduced. Bibliography: 9 titles.
Keywords: integrable systems, atoms, finite groups.
@article{SM_2014_205_11_a5,
     author = {E. I. Orlova},
     title = {The symmetry groups of bifurcations of integrable {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {1668--1682},
     publisher = {mathdoc},
     volume = {205},
     number = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a5/}
}
TY  - JOUR
AU  - E. I. Orlova
TI  - The symmetry groups of bifurcations of integrable Hamiltonian systems
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1668
EP  - 1682
VL  - 205
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_11_a5/
LA  - en
ID  - SM_2014_205_11_a5
ER  - 
%0 Journal Article
%A E. I. Orlova
%T The symmetry groups of bifurcations of integrable Hamiltonian systems
%J Sbornik. Mathematics
%D 2014
%P 1668-1682
%V 205
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_11_a5/
%G en
%F SM_2014_205_11_a5
E. I. Orlova. The symmetry groups of bifurcations of integrable Hamiltonian systems. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1668-1682. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a5/