Concentration of the $L_1$-norm of trigonometric polynomials and entire functions
Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1620-1649
Voir la notice de l'article provenant de la source Math-Net.Ru
For any sufficiently large $n$, the minimal measure of a subset of $[-\pi,\pi]$ on which some nonzero trigonometric polynomial of order $\le n$ gains half of the $L_1$-norm is shown to be $\pi/(n+1)$. A similar result for entire functions of exponential type is established.
Bibliography: 13 titles.
Keywords:
trigonometric polynomials, entire functions, extremal problems
Mots-clés : $L_1$-norm.
Mots-clés : $L_1$-norm.
@article{SM_2014_205_11_a3,
author = {Yu. V. Malykhin and K. S. Ryutin},
title = {Concentration of the $L_1$-norm of trigonometric polynomials and entire functions},
journal = {Sbornik. Mathematics},
pages = {1620--1649},
publisher = {mathdoc},
volume = {205},
number = {11},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a3/}
}
TY - JOUR AU - Yu. V. Malykhin AU - K. S. Ryutin TI - Concentration of the $L_1$-norm of trigonometric polynomials and entire functions JO - Sbornik. Mathematics PY - 2014 SP - 1620 EP - 1649 VL - 205 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_11_a3/ LA - en ID - SM_2014_205_11_a3 ER -
Yu. V. Malykhin; K. S. Ryutin. Concentration of the $L_1$-norm of trigonometric polynomials and entire functions. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1620-1649. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a3/