@article{SM_2014_205_11_a2,
author = {A. Laurin\v{c}ikas},
title = {Joint discrete universality of {Hurwitz} zeta functions},
journal = {Sbornik. Mathematics},
pages = {1599--1619},
year = {2014},
volume = {205},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a2/}
}
A. Laurinčikas. Joint discrete universality of Hurwitz zeta functions. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1599-1619. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a2/
[1] S. M. Voronin, Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Diss. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1977, 76 pp.
[2] S. M. Gonek, Analytic properties of zeta and $L$-functions, Ph. D. thesis, University of Michigan, Michigan, USA, 1979, 175 pp. | MR
[3] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. thesis, Indian Statistical Institute, Calcutta, 1981
[4] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer Academic Publishers, Dordrecht, 2002, viii+189 pp. | MR | Zbl
[5] J. Sander, J. Steuding, “Joint universality for sums and products of Dirichlet $L$-functions”, Analysis (Munich), 26:3 (2006), 295–312 | DOI | MR | Zbl
[6] A. Laurinčikas, R. Macaitienė, “The discrete universality of the periodic Hurwitz zeta function”, Integral Transforms Spec. Funct., 20:9-10 (2009), 673–686 | DOI | MR | Zbl
[7] T. Nakamura, “The existence and the non-existence of joint $t$-universality for Lerch zeta-functions”, J. Number Theory, 125:2 (2007), 424–441 | DOI | MR | Zbl
[8] A. Laurinčikas, “The joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3:11 (2008), 169–187 | MR | Zbl
[9] A. Laurinčikas, “On the universality of the Hurwitz zeta-function”, Int. J. Number Theory, 9:1 (2013), 155–165 | DOI | MR | Zbl
[10] A. Laurinčikas, J. Rašytė, “Generalizations of a discrete universality theorem for Hurwitz zeta-functions”, Lith. Math. J., 52:2 (2012), 172–180 | DOI | MR | Zbl
[11] A. Laurinčikas, “Joint universality of Hurwitz zeta-functions”, Bull. Aust. Math. Soc., 86:2 (2012), 232–243 | DOI | MR | Zbl
[12] K. M. Bitar, N. N. Khuri, H. C. Ren, “Paths integrals and Voronin's theorem on the universality of the Riemann zeta function”, Ann. Physics, 211:1 (1991), 172–196 | DOI | MR | Zbl
[13] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, USSR-Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl
[14] Yu. V. Nesterenko, “Modular functions and transcendence questions”, Sb. Math., 187:9 (1996), 1319–1348 | DOI | DOI | MR | Zbl
[15] H. Heyer, Probability measures on locally compact groups, Ergeb. Math. Grenzgeb., 94, Springer-Verlag, Berlin–New York, 1977, x+531 pp. | MR | Zbl
[16] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | Zbl
[17] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin–New York, 1971, ix+178 pp. | DOI | MR | Zbl
[18] S. N. Mergelyan, “Uniform approximations to functions of a complex variable”, Amer. Math. Soc. Transl., 101 (1954), 99 pp | MR | MR | Zbl | Zbl
[19] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, 3rd ed., Amer. Math. Soc., Providence, R.I., 1960, x+398 pp. | MR | MR | Zbl | Zbl
[20] I. I. Privalov, Vvedenie v teoriyu funktsii kompleksnogo peremennogo, 11-e izd., Nauka, M., 1967, 444 pp. | MR | Zbl