Joint discrete universality of Hurwitz zeta functions
Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1599-1619 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a joint discrete universality theorem for Hurwitz zeta functions. Here the parameters of zeta functions and the step of shifts of these functions approximating a given family of analytic functions are connected by some condition of linear independence. Nesterenko's theorem gives an example satisfying this condition. The universality theorem is applied to estimate the number of zeros of a linear combination of Hurwitz zeta functions. Bibliography: 20 titles.
Keywords: algebraic independence, Hurwitz zeta function, linear independence, limit theorem, space of analytic functions, joint universality.
@article{SM_2014_205_11_a2,
     author = {A. Laurin\v{c}ikas},
     title = {Joint discrete universality of {Hurwitz} zeta functions},
     journal = {Sbornik. Mathematics},
     pages = {1599--1619},
     year = {2014},
     volume = {205},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a2/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - Joint discrete universality of Hurwitz zeta functions
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1599
EP  - 1619
VL  - 205
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_11_a2/
LA  - en
ID  - SM_2014_205_11_a2
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T Joint discrete universality of Hurwitz zeta functions
%J Sbornik. Mathematics
%D 2014
%P 1599-1619
%V 205
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2014_205_11_a2/
%G en
%F SM_2014_205_11_a2
A. Laurinčikas. Joint discrete universality of Hurwitz zeta functions. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1599-1619. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a2/

[1] S. M. Voronin, Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Diss. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1977, 76 pp.

[2] S. M. Gonek, Analytic properties of zeta and $L$-functions, Ph. D. thesis, University of Michigan, Michigan, USA, 1979, 175 pp. | MR

[3] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. thesis, Indian Statistical Institute, Calcutta, 1981

[4] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer Academic Publishers, Dordrecht, 2002, viii+189 pp. | MR | Zbl

[5] J. Sander, J. Steuding, “Joint universality for sums and products of Dirichlet $L$-functions”, Analysis (Munich), 26:3 (2006), 295–312 | DOI | MR | Zbl

[6] A. Laurinčikas, R. Macaitienė, “The discrete universality of the periodic Hurwitz zeta function”, Integral Transforms Spec. Funct., 20:9-10 (2009), 673–686 | DOI | MR | Zbl

[7] T. Nakamura, “The existence and the non-existence of joint $t$-universality for Lerch zeta-functions”, J. Number Theory, 125:2 (2007), 424–441 | DOI | MR | Zbl

[8] A. Laurinčikas, “The joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3:11 (2008), 169–187 | MR | Zbl

[9] A. Laurinčikas, “On the universality of the Hurwitz zeta-function”, Int. J. Number Theory, 9:1 (2013), 155–165 | DOI | MR | Zbl

[10] A. Laurinčikas, J. Rašytė, “Generalizations of a discrete universality theorem for Hurwitz zeta-functions”, Lith. Math. J., 52:2 (2012), 172–180 | DOI | MR | Zbl

[11] A. Laurinčikas, “Joint universality of Hurwitz zeta-functions”, Bull. Aust. Math. Soc., 86:2 (2012), 232–243 | DOI | MR | Zbl

[12] K. M. Bitar, N. N. Khuri, H. C. Ren, “Paths integrals and Voronin's theorem on the universality of the Riemann zeta function”, Ann. Physics, 211:1 (1991), 172–196 | DOI | MR | Zbl

[13] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, USSR-Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl

[14] Yu. V. Nesterenko, “Modular functions and transcendence questions”, Sb. Math., 187:9 (1996), 1319–1348 | DOI | DOI | MR | Zbl

[15] H. Heyer, Probability measures on locally compact groups, Ergeb. Math. Grenzgeb., 94, Springer-Verlag, Berlin–New York, 1977, x+531 pp. | MR | Zbl

[16] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | Zbl

[17] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin–New York, 1971, ix+178 pp. | DOI | MR | Zbl

[18] S. N. Mergelyan, “Uniform approximations to functions of a complex variable”, Amer. Math. Soc. Transl., 101 (1954), 99 pp | MR | MR | Zbl | Zbl

[19] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, 3rd ed., Amer. Math. Soc., Providence, R.I., 1960, x+398 pp. | MR | MR | Zbl | Zbl

[20] I. I. Privalov, Vvedenie v teoriyu funktsii kompleksnogo peremennogo, 11-e izd., Nauka, M., 1967, 444 pp. | MR | Zbl