The scattering problem for nonlocal potentials
Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1564-1598 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the direct and inverse scattering problems for integro-differential operators which are one-dimensional perturbations of the self-adjoint second derivative operator on the half-axis. We also describe the scattering data for this class of operators. Bibliography: 28 titles.
Keywords: nonlocal potential, inverse scattering problem.
Mots-clés : one-dimensional perturbation
@article{SM_2014_205_11_a1,
     author = {V. A. Zolotarev},
     title = {The scattering problem for nonlocal potentials},
     journal = {Sbornik. Mathematics},
     pages = {1564--1598},
     year = {2014},
     volume = {205},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a1/}
}
TY  - JOUR
AU  - V. A. Zolotarev
TI  - The scattering problem for nonlocal potentials
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1564
EP  - 1598
VL  - 205
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_11_a1/
LA  - en
ID  - SM_2014_205_11_a1
ER  - 
%0 Journal Article
%A V. A. Zolotarev
%T The scattering problem for nonlocal potentials
%J Sbornik. Mathematics
%D 2014
%P 1564-1598
%V 205
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2014_205_11_a1/
%G en
%F SM_2014_205_11_a1
V. A. Zolotarev. The scattering problem for nonlocal potentials. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1564-1598. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a1/

[1] V. A. Marchenko, “Vosstanovlenie potentsialnoi energii po fazam rasseyaniya voln”, Dokl. AN SSSR, 104 (1955), 695–698 | MR | Zbl

[2] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel, 1986, xii+367 pp. | DOI | MR | MR | Zbl | Zbl

[3] L. D. Faddeyev, “The inverse problem in the quantum theory of scattering”, J. Mathematical Phys., 4 (1963), 72–104 | DOI | MR | MR | Zbl | Zbl

[4] B. M. Levitan, Inverse Sturm–Liouville problems, VSP, Zeist, 1987, x+240 pp. | MR | MR | Zbl | Zbl

[5] K. Chadan, P. C. Sabatier, Inverse problems in quantum scattering theory, Texts Monogr. Phys., Springer-Verlag, New York–Berlin, 1977, xxii+344 pp. | MR | MR | Zbl

[6] L. P. Nizhnik, Obratnye zadachi rasseyaniya dlya giperbolicheskikh uravnenii, Naukova dumka, Kiev, 1991, 232 pp. | MR | Zbl

[7] S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | MR | Zbl | Zbl

[8] D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr., 105, Amer. Math. Soc., Providence, RI, 1992, x+341 pp. | MR | MR | Zbl

[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. III, Scattering theory, Academic Press, New York–London, 1979, xv+463 pp. | MR | MR | Zbl | Zbl

[10] V. Kheine, M. Koen, D. Ueir, Teoriya psevdopotentsiala, per. s angl., Mir, M., 1973, 557 pp.

[11] L. P. Nizhnik, V. G. Tarasov, “Obratnaya zadacha rasseyaniya dlya odnogo integro-differentsialnogo uravneniya”, Pryamye i obratnye zadachi teorii rasseyaniya, In-t matem. AN USSR, Kiev, 1981, 61–76 | MR | Zbl

[12] V. M. Muzafarov, “Inverse scattering problem in a class of nonlocal potentials. I”, Theoret. and Math. Phys., 70:1 (1987), 20–34 | DOI | MR

[13] V. M. Muzafarov, “Inverse scattering problem in a class of nonlocal potentials. II. Coupled partial channels”, Theoret. and Math. Phys., 71:1 (1987), 339–346 | DOI | MR

[14] S. Albeverio, R. O. Hryniv, L. P. Niznik, “Inverse spectral problems for non-local Sturm–Liouville operators”, Inverse problems, 23:2 (2007), 523–535 | DOI | MR | Zbl

[15] T. A. Weber, “Nonlocal potentials, isolated states, and Levinson's theorem”, J. Math. Phys., 40:1 (1999), 140–149 | DOI | MR | Zbl

[16] N. I. Pletnikova, “Asimptotika sobstvennykh funktsii operatora Shredingera s nelokalnym potentsialom”, Vestn. Udmurtsk. un-ta. Matem., 2007, no. 1, 109–120

[17] L. D. Faddeev, “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Kraevye zadachi matematicheskoi fiziki. 2, Sbornik rabot. Posvyaschaetsya pamyati Vladimira Andreevicha Steklova v svyazi so stoletiem so dnya ego rozhdeniya, Tr. MIAN SSSR, 73, Nauka, M.–L., 1964, 292–313 | MR | Zbl

[18] V. E. Lyantse, “A differential operator with spectral singularities. I”, Amer. Math. Soc. Transl. Ser. 2, 60, Amer. Math. Soc., Providence, RI, 1967, 185–225 | MR | Zbl

[19] B. S. Pavlov, “O nesamosopryazhennom operatore Shredingera”, Spektralnaya teoriya i volnovye protsessy, Probl. mat. fiz., 1, Izd-vo LGU, L., 1966, 102–132 | MR | Zbl

[20] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, Oxford Univ. Press, 1937, x+390 pp. | MR | Zbl

[21] N. I. Akhiezer, Lectures on integral transforms, Transl. Math. Monogr., 70, Amer. Math. Soc., Providence, RI, 1988, vi+108 pp. | MR | MR | Zbl | Zbl

[22] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[23] H. M. Nussenzveig, Causality and dispersion relations, Math. Sci. Engrg., 95, Academic Press, New York–London, 1972, xii+435 pp. | MR

[24] F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford–New York–Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.–London, 1966, xix+561 pp. | MR | MR | Zbl | Zbl

[25] B. V. Khvedelidze, “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbil. matem. in-ta AN GruzSSR, 23 (1956), 3–158 | MR | Zbl

[26] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33(75):3 (1953), 597–626 | MR | Zbl

[27] G. H. Hardy, “Notes on some points in the integral calculus. LX. An inequality between integrals”, Messenger Math., 54 (1925), 150–156 | Zbl

[28] E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, London, 1939, x+454 pp. | MR | Zbl | Zbl