Polynomial solutions of the Monge-Ampère equation
Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1529-1563 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of the existence of polynomial solutions to the Monge-Ampère equation $z_{xx}z_{yy}-z_{xy}^2=f(x,y)$ is considered in the case when $f(x,y)$ is a polynomial. It is proved that if $f$ is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the $x$, $y$-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.
Keywords: polynomials of two variables
Mots-clés : existence of solutions, explicit expressions for solutions.
@article{SM_2014_205_11_a0,
     author = {Yu. A. Aminov},
     title = {Polynomial solutions of the {Monge-Amp\`ere} equation},
     journal = {Sbornik. Mathematics},
     pages = {1529--1563},
     year = {2014},
     volume = {205},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Polynomial solutions of the Monge-Ampère equation
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1529
EP  - 1563
VL  - 205
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_11_a0/
LA  - en
ID  - SM_2014_205_11_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Polynomial solutions of the Monge-Ampère equation
%J Sbornik. Mathematics
%D 2014
%P 1529-1563
%V 205
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2014_205_11_a0/
%G en
%F SM_2014_205_11_a0
Yu. A. Aminov. Polynomial solutions of the Monge-Ampère equation. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1529-1563. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a0/

[1] G. Monge, Feuilles d'analyse appliquée à la géométrie, Bernard, Paris, 1795

[2] A. Ampère, “Application de la théorie sur les intégrales des équations aux différentielles partielles du premier et second ordre”, J. de l'École Polytechnique, 11 (1820), 1–188

[3] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, v. I, Grundlehren Math. Wiss., 1, Elementare Differentialgeometrie, 3. erweiterte Aufl., J. Springer, Berlin, 1930, x+311 pp. | MR | Zbl

[4] É. Goursat, Cours d'analyse mathématique, v. III, Intégrales infiniment voisines. Équations aux dérivées du second ordre. Équations intégrales. Calcul des variations, 3 ed., Gauthier-Villars, Paris, 1923, 702 pp. | MR | Zbl

[5] K. Jörgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127:1 (1954), 180–184 | DOI | MR | Zbl

[6] K. Calabi, “Improper affine hyperspheres of convex type and generelization of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl

[7] A. V. Pogorelov, “On the improper convex affine hyperspheres”, Geometriae Dedicata, 1:1 (1972), 33–46 | DOI | MR | Zbl

[8] Yu. Aminov, K. Arslan, B. Bayram, B. Bulca, C. Murathan, G. Öztürk, “On the solution of the Monge–Ampère equation $Z_{xx}Z_{yy}-Z_{xy}^2=f(x,y)$ with quadratic right side”, Zh. Mat. Fiz. Anal. Geom., 7:3 (2011), 203–211 | MR | Zbl

[9] Yu. A. Aminov, “On the Monge–Ampére equation in a polynomial domain”, Dokl. Math., 88:1 (2013), 425–426 | DOI | DOI | MR | Zbl

[10] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. VII, Elastizitätstheorie, Akademie-Verlag, Berlin, 1965, viii+183 pp. | MR | MR | Zbl