Polynomial solutions of the Monge-Amp\`ere equation
Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1529-1563

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the existence of polynomial solutions to the Monge-Ampère equation $z_{xx}z_{yy}-z_{xy}^2=f(x,y)$ is considered in the case when $f(x,y)$ is a polynomial. It is proved that if $f$ is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the $x$$y$-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.
Keywords: polynomials of two variables
Mots-clés : existence of solutions, explicit expressions for solutions.
@article{SM_2014_205_11_a0,
     author = {Yu. A. Aminov},
     title = {Polynomial solutions of the {Monge-Amp\`ere} equation},
     journal = {Sbornik. Mathematics},
     pages = {1529--1563},
     publisher = {mathdoc},
     volume = {205},
     number = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_11_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Polynomial solutions of the Monge-Amp\`ere equation
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1529
EP  - 1563
VL  - 205
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_11_a0/
LA  - en
ID  - SM_2014_205_11_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Polynomial solutions of the Monge-Amp\`ere equation
%J Sbornik. Mathematics
%D 2014
%P 1529-1563
%V 205
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_11_a0/
%G en
%F SM_2014_205_11_a0
Yu. A. Aminov. Polynomial solutions of the Monge-Amp\`ere equation. Sbornik. Mathematics, Tome 205 (2014) no. 11, pp. 1529-1563. http://geodesic.mathdoc.fr/item/SM_2014_205_11_a0/