On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1492-1527 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an elliptic operator in a multidimensional domain with frequently changing boundary conditions in the case when the homogenized operator contains the Dirichlet boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain estimates for the rate of convergence. A complete asymptotic expansion is constructed for the resolvent when it acts on sufficiently smooth functions. Bibliography: 41 titles.
Keywords: frequent change, homogenization, uniform resolvent convergence, asymptotic behaviour.
@article{SM_2014_205_10_a5,
     author = {T. F. Sharapov},
     title = {On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized {Dirichlet} condition},
     journal = {Sbornik. Mathematics},
     pages = {1492--1527},
     year = {2014},
     volume = {205},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a5/}
}
TY  - JOUR
AU  - T. F. Sharapov
TI  - On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1492
EP  - 1527
VL  - 205
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_10_a5/
LA  - en
ID  - SM_2014_205_10_a5
ER  - 
%0 Journal Article
%A T. F. Sharapov
%T On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition
%J Sbornik. Mathematics
%D 2014
%P 1492-1527
%V 205
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2014_205_10_a5/
%G en
%F SM_2014_205_10_a5
T. F. Sharapov. On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1492-1527. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a5/

[1] G. A. Chechkin, “Averaging of boundary value problems with a singular perturbation of the boundary conditions”, Russian Acad. Sci. Sb. Math., 79:1 (1994), 191–222 | DOI | MR | Zbl

[2] R. R. Gadyl'shin, G. A. Chechkin, “A boundary value problem for the Laplacian with rapidly changing type of boundary conditions in a multi-dimensional domain”, Siberian Math. J., 40:2 (1999), 229–244 | MR | Zbl

[3] A. Friedman, Chaocheng Huang, Jiongmin Yong, “Effective permeability of the boundary of a domain”, Comm. Partial Differential Equations, 20:1-2 (1995), 59–102 | DOI | MR | Zbl

[4] A. Yu. Belyaev, G. A. Chechkin, “Averaging operators with boundary conditions of fine-scaled structure”, Math. Notes, 65:4 (1999), 418–429 | DOI | DOI | MR | Zbl

[5] A. Damlamian, Ta-Tsien Li, “Boundary homogenization for ellpitic problems”, J. Math. Pures Appl. (9), 66:4 (1987), 351–361 | MR | Zbl

[6] M. Lobo, E. Perez, “Asymptotic behaviour of an elastic body with a surface having small stuck regions”, RAIRO Modél. Math. Anal. Numér., 22:4 (1988), 609–624 | MR | Zbl

[7] G. A. Chechkin, E. I. Doronina, “On the asymptotics of the spectrum of a boundary value problem with nonperiodic rapidly alternating boundary conditions”, Funct. Differ. Equ., 8:1-2 (2001), 111–122 | MR | Zbl

[8] O. A. Oleinik, G. Chechkin, “On asymptotics of solutions and eigenvalues of the boundary value problem with rapidly alternating boundary conditions for the system of elasticity”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7:1 (1996), 5–15 | MR | Zbl

[9] D. I. Borisov, “Asymptotics and estimates for the eigenelements of the Laplacian with frequently alternating non-periodic boundary conditions”, Izv. Math., 67:6 (2003), 1101–1148 | DOI | DOI | MR | Zbl

[10] D. I. Borisov, “On a problem with nonperiodic frequent alternation of boundary conditions imposed on fast oscillating sets”, Comput. Math. Math. Phys., 46:2 (2006), 271–281 | DOI | MR | Zbl

[11] G. A. Chechkin, “Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case”, Izv. Math., 69:4 (2005), 805–846 | DOI | DOI | MR | Zbl

[12] M. Sh. Birman, T. A. Suslina, “Homogenization with corrector term for periodic elliptic differential operators”, St. Petersburg Math. J., 17:6 (2006), 897–973 | DOI | MR | Zbl

[13] M. Sh. Birman, T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class $H^1(\mathbb R^d)$”, St. Petersburg Math. J., 18:6 (2007), 857–955 | DOI | MR | Zbl

[14] V. V. Zhikov, S. E. Pastukhova, S. V. Tikhomirova, “On the homogenization of degenerate elliptic equations”, Dokl. Math., 74:2 (2006), 716–720 | DOI | MR | Zbl

[15] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94 | MR | Zbl

[16] D. Borisov, G. Cardone, “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A, 42:36 (2009), 365205, 21 pp. | DOI | MR | Zbl

[17] D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. Henri Poincaré, 11:8 (2010), 1591–1627 | DOI | MR | Zbl

[18] D. Borisov, R. Bunoiu, G. Cardone, “Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows”, Problemy matematicheskogo analiza, 58, 2011, 59–68 | MR | Zbl

[19] D. Borisov, R. Bunoiu, G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Z. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl

[20] R. R. Gadyl'shin, “On the asymptotics of eigenvalues for a periodically fixed membrane”, St. Petersburg Math. J., 10:1 (1999), 1–14 | MR | Zbl

[21] R. R. Gadyl'shin, “Asymptotics of the eigenvalues of a boundary value problem with rapidly oscillating boundary conditions”, Differential Equations, 35:4 (1999), 540–551 | MR | Zbl

[22] D. I. Borisov, “Two-parameter asymptotics in a boundary-value problem for the Laplacian”, Math. Notes, 70:4 (2001), 471–485 | DOI | DOI | MR | Zbl

[23] G. A. Chechkin, “Asymptotic expansion of the solution of a boundary value problem with rapidly changing type of boundary conditions”, J. Math. Sci. (New York), 85:6 (1997), 2440–2449 | DOI | MR | Zbl

[24] D. I. Borisov, “On a singularly perturbed boundary value problem for the Laplacian in a cylinder”, Differ. Equ., 38:8 (2002), 1140–1148 | DOI | MR | Zbl

[25] D. I. Borisov, “Boundary-value problem in a cylinder with frequently changing type of boundary”, Sb. Math., 193:7 (2002), 977–1008 | DOI | DOI | MR | Zbl

[26] G. A. Chechkin, “Asymptotic expansion of the eigenelements of the Laplace operator in a domain with a large number of “light” concentrated masses sparsely situated on the boundary. Two-dimensional case”, Trans. Moscow Math. Soc., 70 (2009), 71–134 | DOI | MR | Zbl

[27] E. I. Doronina, G. A. Chechkin, “On eigenvibrations of a body with many concentrated masses located nonperiodically along the boundary”, Proc. Steklov Inst. Math., 236 (2002), 148–156 | MR | Zbl

[28] D. Borisov, G. Cardone, L. Faella, C. Perugia, “Uniform resolvent convergence for strip with fast oscillating boundary”, J. Differential Equations, 255:12 (2013), 4378–4402 | DOI | MR | Zbl

[29] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[30] V. P. Mikhajlov, Partial differential equations, Mir, Moscow, 1978, 397 pp. | MR | MR | Zbl | Zbl

[31] D. I. Borisov, “Asymptotics for the solutions of elliptic systems with rapidly oscillating coefficients”, St. Petersburg Math. J., 20:2 (2009), 175–191 | DOI | MR | Zbl

[32] R. R. Gadyl'shin, “Asymptotic properties of an eigenvalue of a problem for a singularly perturbed self-adjoint elliptic equation with a small parameter in the boundary conditions”, Differential Equations, 22 (1986), 474–483 | MR | Zbl

[33] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 | MR | Zbl

[34] N. N. Bogolyubow, Yu. A. Mitropolski, Asymptotische Methoden in der Theorie der nichtlinearen Schwingungen, Math. Lehrbucher und Monogr., XVIII, Akademie-Verlag, Berlin, 1965, xii+453 pp. | MR | MR | Zbl | Zbl

[35] A. Majda, “Outgoing solutions for perturbation of $-\Delta$ with applications to spectral and scattering theory”, J. Differential Equations, 16:3 (1974), 515–547 | DOI | MR | Zbl

[36] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, ix+398 pp. | MR | MR | Zbl

[37] D. I. Borisov, “Discrete spectrum of an asymmetric pair of waveguides coupled through a window”, Sb. Math., 197:4 (2006), 475–504 | DOI | DOI | MR | Zbl

[38] O. A. Oleĭnik, A. S. Shamaev, G. A. Yosifian, Mathematical problems in elasticity and homogenization, Stud. Math. Appl., 26, North-Holland Publishing Co., Amsterdam, 1992, xiv+398 pp. | MR | MR | Zbl | Zbl

[39] V. A. Kondrat'ev, “Singularities of a solution of Dirichlet's problem for a second-order elliptic equation in the neighborhood of an edge”, Differential Equations, 13:11 (1977), 1411–1415 | MR | Zbl

[40] A. M. Golovina, “On the resolvent of elliptic operators with distant perturbations in the space”, Russ. J. Math. Phys., 19:2 (2012), 182–192 | DOI | MR | Zbl

[41] D. I. Borisov, “Dvuparametricheskie asimptotiki sobstvennykh chisel Laplasiana s chastym cheredovaniem granichnykh uslovii”, Vestnik molodykh uchenykh. Ser. Prikl. matem. i mekh., 2002, no. 1, 36–52