A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions. I
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1473-1491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Tate-Iwasawa method the problem of meromorphic continuation and of the existence of a functional equation can be solved for the zeta and $L$-functions of one-dimensional arithmetical schemes. A new version of this method is put forward, which looks at the case of curves over a finite field and of unramified $L$-functions. The proof is based on a reduction of the problem to a Cousin problem on the Riemann sphere which is related to the curve under consideration. Bibliography: 16 titles.
Keywords: zeta function, analytic continuation, sum of residues, Cousin problem.
Mots-clés : Poisson formula
@article{SM_2014_205_10_a4,
     author = {A. N. Parshin},
     title = {A holomorphic version of the {Tate-Iwasawa} method for unramified $L${-functions.~I}},
     journal = {Sbornik. Mathematics},
     pages = {1473--1491},
     year = {2014},
     volume = {205},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a4/}
}
TY  - JOUR
AU  - A. N. Parshin
TI  - A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions. I
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1473
EP  - 1491
VL  - 205
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_10_a4/
LA  - en
ID  - SM_2014_205_10_a4
ER  - 
%0 Journal Article
%A A. N. Parshin
%T A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions. I
%J Sbornik. Mathematics
%D 2014
%P 1473-1491
%V 205
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2014_205_10_a4/
%G en
%F SM_2014_205_10_a4
A. N. Parshin. A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions. I. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1473-1491. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a4/

[1] E. Artin, “Quadratische Körper im Gebiet der höheren Kongruenzen. I”, Math. Z., 19:1 (1924), 153–206 ; II, 207–246 | DOI | MR | Zbl | DOI | MR

[2] F. K. Schmidt, “Analytische Zahlentheorie in Körpern der Charakteristik $p$”, Math. Z., 33:1 (1931), 1–32 | DOI | MR | Zbl

[3] M. Deuring, Lectures on the theory of algebraic functions of one variable, Lecture Notes in Math., 314, Springer-Verlag, Berlin–New York, 1973, vi+151 pp. | MR | Zbl

[4] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Akad. Verlagsges., Leipzig, 1923, viii+265 pp. | MR | Zbl

[5] J. T. Tate, Jr., Fourier analysis in number fields and Hecke's zeta-functions, Thesis (Ph.D.), Princeton Univ., Princeton, 1950, 60 pp. | MR

[6] K. Iwasawa, “A note on $L$-functions”, Proceedings of the International Congress of Mathematicians (Cambridge, Mass., 1950), v. 2, Amer. Math. Soc., Providence, R. I., 1952, 322

[7] K. Iwasawa, “Letter to J. Dieudonné”, Zeta functions in geometry (Tokyo, 1990), Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo, 1992, 445–450 | MR | Zbl

[8] B. Riman, “O chisle prostykh chisel, ne prevyshayuschikh dannoi velichiny”, Sochineniya, OGIZ, M.–L., 1948, 216–224; B. Riemann, “Über die Anzahl der Primzahlen unter einer gegebenen Grösse”, Monatsb. der Berliner Akad., 1859/1860, 671–680; Gesammelte mathematische Werke und wissenschaftlicher Nachlass, No. VII, 2. Aufl., B. G. Teubner, Leipzig, 1892, 145–155 | MR | Zbl

[9] A. N. Parshin, “Zapiski o formule Puassona”, Algebra i analiz, 23:5 (2011), 1–54 ; A. N. Parshin, “Notes on the Poisson formula”, St. Petersburg Math. J., 23:5 (2012), 781–818 ; arXiv: 1011.3392 | MR | DOI

[10] M. M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, arXiv: math/0001005

[11] A. Weil, Basic number theory, Grundlehren Math. Wiss., 144, 3rd ed., Springer-Verlag, New York–Berlin, 1974, xviii+325 pp. | MR | MR | Zbl | Zbl

[12] Algebraic number theory, eds. J. W. S. Cassels, A. Fröhlich, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967, xviii+366 pp. | MR | MR | Zbl

[13] S. Lang, Algebraic numbers, Addison-Wesley Publishing Co., Inc., Reading, Mass.–Palo Alto–London, 1964, ix+163 pp. | MR | MR | Zbl | Zbl

[14] A. Weil, Séminaire Bourbaki, 18e année: 1965/1966, v. 9, Soc. Math. France, Paris, 1966, 523–531, Exp. No. 312 | MR

[15] S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloq. Publ., 27, Amer. Math. Soc., New York, 1942, vi+389 pp. | MR | Zbl

[16] J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago, VII, Hermann, Paris, 1959, 202 pp. | MR | Zbl | Zbl