A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions.~I
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1473-1491

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Tate-Iwasawa method the problem of meromorphic continuation and of the existence of a functional equation can be solved for the zeta and $L$-functions of one-dimensional arithmetical schemes. A new version of this method is put forward, which looks at the case of curves over a finite field and of unramified $L$-functions. The proof is based on a reduction of the problem to a Cousin problem on the Riemann sphere which is related to the curve under consideration. Bibliography: 16 titles.
Keywords: zeta function, analytic continuation, sum of residues, Cousin problem.
Mots-clés : Poisson formula
@article{SM_2014_205_10_a4,
     author = {A. N. Parshin},
     title = {A holomorphic version of the {Tate-Iwasawa} method for unramified $L${-functions.~I}},
     journal = {Sbornik. Mathematics},
     pages = {1473--1491},
     publisher = {mathdoc},
     volume = {205},
     number = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a4/}
}
TY  - JOUR
AU  - A. N. Parshin
TI  - A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions.~I
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1473
EP  - 1491
VL  - 205
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_10_a4/
LA  - en
ID  - SM_2014_205_10_a4
ER  - 
%0 Journal Article
%A A. N. Parshin
%T A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions.~I
%J Sbornik. Mathematics
%D 2014
%P 1473-1491
%V 205
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_10_a4/
%G en
%F SM_2014_205_10_a4
A. N. Parshin. A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions.~I. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1473-1491. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a4/