Optimal recovery of linear operators in non-Euclidean metrics
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1442-1472
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. A number of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, a family of optimal methods is found, from which the methods requiring the least amount of original information are singled out.
Bibliography: 25 titles.
			
            
            
            
          
        
      @article{SM_2014_205_10_a3,
     author = {K. Yu. Osipenko},
     title = {Optimal recovery of linear operators in {non-Euclidean} metrics},
     journal = {Sbornik. Mathematics},
     pages = {1442--1472},
     publisher = {mathdoc},
     volume = {205},
     number = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a3/}
}
                      
                      
                    K. Yu. Osipenko. Optimal recovery of linear operators in non-Euclidean metrics. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1442-1472. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a3/
