Optimal recovery of linear operators in non-Euclidean metrics
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1442-1472

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. A number of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, a family of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.
@article{SM_2014_205_10_a3,
     author = {K. Yu. Osipenko},
     title = {Optimal recovery of linear operators in {non-Euclidean} metrics},
     journal = {Sbornik. Mathematics},
     pages = {1442--1472},
     publisher = {mathdoc},
     volume = {205},
     number = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a3/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Optimal recovery of linear operators in non-Euclidean metrics
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1442
EP  - 1472
VL  - 205
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_10_a3/
LA  - en
ID  - SM_2014_205_10_a3
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Optimal recovery of linear operators in non-Euclidean metrics
%J Sbornik. Mathematics
%D 2014
%P 1442-1472
%V 205
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_10_a3/
%G en
%F SM_2014_205_10_a3
K. Yu. Osipenko. Optimal recovery of linear operators in non-Euclidean metrics. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1442-1472. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a3/