@article{SM_2014_205_10_a3,
author = {K. Yu. Osipenko},
title = {Optimal recovery of linear operators in {non-Euclidean} metrics},
journal = {Sbornik. Mathematics},
pages = {1442--1472},
year = {2014},
volume = {205},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a3/}
}
K. Yu. Osipenko. Optimal recovery of linear operators in non-Euclidean metrics. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1442-1472. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a3/
[1] S. A. Smolyak, Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1965
[2] N. S. Bakhvalov, “On the optimality of linear methods for operator approximation in convex classes of functions”, U.S.S.R. Comput. Math. Math. Phys., 11:4 (1971), 244–249 | DOI | MR | Zbl
[3] K. Yu. Osipenko, “Optimal interpolation of analytic functions”, Math. Notes, 12:4 (1972), 712–719 | DOI | MR | Zbl
[4] A. G. Marchuk, K. Yu. Osipenko, “Best approximation of functions specified with an error at a finite number of points”, Math. Notes, 17:3 (1975), 207–212 | DOI | MR | Zbl
[5] K. Yu. Osipenko, “Best approximation of analytic functions from information about their values at a finite number of points”, Math. Notes, 19:1 (1976), 17–23 | DOI | MR | Zbl
[6] C. A. Micchelli, T. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory, Proc. Internat. Sympos. (Freudenstadt, 1976), Plenum, New York, 1977, 1–54 | MR | Zbl
[7] V. V. Arestov, “Optimal recovery of operators and related problems”, Proc. Steklov Inst. Math., 189:4 (1990), 1–20 | MR | Zbl
[8] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functionals based on inaccurate data”, Math. Notes, 50:6 (1991), 1274–1279 | DOI | MR | Zbl
[9] J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, ACM Monograph Series, Academic Press, Inc., New York–London, 1980, xiv+341 pp. | MR | MR | Zbl | Zbl
[10] L. Plaskota, Noisy information and computational complexity, Cambridge Univ. Press, Cambridge, 1996, xii+308 pp. | DOI | MR | Zbl
[11] K. Yu. Osipenko, Optimal recovery of analytic functions, Nova Science Publ., Inc., New York, 2000, 220 pp.
[12] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl
[13] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl
[14] A. A. Melkman, C. A. Micchelli, “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16:1 (1979), 87–105 | DOI | MR | Zbl
[15] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error”, Sb. Math., 193:3 (2002), 387–407 | DOI | DOI | MR | Zbl
[16] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from inaccurate information about the spectrum and inequalities for derivatives”, Funct. Anal. Appl., 37:3 (2003), 203–214 | DOI | DOI | MR | Zbl
[17] K. Yu. Osipenko, “The Hardy–Littlewood–Pólya inequality for analytic functions in Hardy–Sobolev spaces”, Sb. Math., 197:3 (2006), 315–334 | DOI | DOI | MR | Zbl
[18] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI | DOI | MR | Zbl
[19] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of values of functions and their derivatives from inaccurate data on the Fourier transform”, Sb. Math., 195:10 (2004), 1461–1476 | DOI | DOI | MR | Zbl
[20] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “How best to recover a function from its inaccurately given spectrum?”, Math. Notes, 92:1 (2012), 51–58 | DOI | DOI | MR | Zbl
[21] V. V. Arestov, “Approximation of linear operators, and related extremal problems”, Proc. Steklov Inst. Math., 138 (1977), 31–44 | MR | Zbl
[22] V. I. Levin, “Tochnye konstanty v neravenstvakh tipa Karlsona”, Dokl. AN CCCP, 59:4 (1948), 635–639 | MR | Zbl
[23] F. I. Andrianov, “Mnogomernye analogi neravenstva Karlsona i ego obobschenii”, Izv. vuzov. Matem., 1967, no. 1, 3–7 | MR | Zbl
[24] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “The Hardy–Littlewood–Pólya inequality and the reconstruction of derivatives from inaccurate data”, Dokl. Math., 83:3 (2011), 337–339 | DOI | MR | Zbl
[25] N. D. Vysk, K. Yu. Osipenko, “Optimal reconstruction of the solution of the wave equation from inaccurate initial data”, Math. Notes, 81:6 (2007), 723–733 | DOI | DOI | MR | Zbl