Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1413-1441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New inequalities are established for analytic functions satisfying Meiman's majorization conditions. Estimates for values of and differential inequalities involving rational trigonometric functions with an integer majorant on an interval of length less than the period and with prescribed poles which are symmetrically positioned relative to the real axis, as well as differential inequalities for trigonometric polynomials in some classes, are given as applications. These results improve several theorems due to Meiman, Genchev, Smirnov and Rusak. Bibliography: 27 titles.
Keywords: majorizing analytic functions, entire functions of exponential type, rational trigonometric functions, polynomials, Bernstein-type inequalities.
@article{SM_2014_205_10_a2,
     author = {A. V. Olesov},
     title = {Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1413--1441},
     year = {2014},
     volume = {205},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a2/}
}
TY  - JOUR
AU  - A. V. Olesov
TI  - Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1413
EP  - 1441
VL  - 205
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_10_a2/
LA  - en
ID  - SM_2014_205_10_a2
ER  - 
%0 Journal Article
%A A. V. Olesov
%T Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials
%J Sbornik. Mathematics
%D 2014
%P 1413-1441
%V 205
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2014_205_10_a2/
%G en
%F SM_2014_205_10_a2
A. V. Olesov. Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1413-1441. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a2/

[1] N. N. Meiman, “Differentsialnye neravenstva i nekotorye voprosy raspredeleniya nulei tselykh i odnoznachnykh analiticheskikh funktsii”, UMN, 7:3(49) (1952), 3–62 | MR | Zbl

[2] A. V. Olesov, “Inequalities for majorizing analytical functions”, J. Math. Sci. (N. Y.), 133:6 (2006), 1693–1703 | DOI | MR | Zbl

[3] N. I. Akhiezer, “O nekotorykh svoistvakh tselykh transtsendentnykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. matem., 10:5 (1946), 411–428 | MR | Zbl

[4] R. P. Boas, Jr., “Inequalities for functions of exponential type”, Math. Scand., 4 (1956), 29–32 | MR | Zbl

[5] B. Ya. Levin, “Ob odnom spetsialnom klasse tselykh funktsii i o svyazannykh s nim ekstremalnykh svoistvakh tselykh funktsii konechnoi stepeni”, Izv. AN SSSR. Ser. matem., 14:1 (1950), 45–84 | MR | Zbl

[6] T. Genchev, “Inequalities for entire functions of exponential type”, Proc. Amer. Math. Soc., 56 (1976), 183–188 | DOI | MR | Zbl

[7] A. V. Olesov, “Application of conformal mappings to inequalities for trigonometric polynomials”, Math. Notes, 76:3 (2004), 368–378 | DOI | DOI | MR | Zbl

[8] P. Borwein, T. Erdélyi, J. Zhang, “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc. (2), 50:3 (1994), 501–519 | DOI | MR | Zbl

[9] A. L. Lukashov, “Inequalities for derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565 | DOI | DOI | MR | Zbl

[10] S. I. Kalmykov, “Majoration principles and some inequalities for polynomials and rational functions with prescribed poles”, J. Math. Sci. (N. Y.), 157:4 (2009), 623–631 | DOI | MR | Zbl

[11] A. L. Lukashov, “Estimates for derivatives of rational functions and the fourth Zolotarev problem”, St. Petersburg Math. J., 19:2 (2008), 253–259 | DOI | MR | Zbl

[12] V. N. Dubinin, S. I. Kalmykov, “A majoration principle for meromorphic functions”, Sb. Math., 198:12 (2007), 1737–1745 | DOI | DOI | MR | Zbl

[13] V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684 | DOI | DOI | MR | Zbl

[14] V. S. Videnskiĭ, “Extremal estimates for the derivative of a trigonometric polynomial on an interval shorter than its period”, Soviet Math. Dokl., 1 (1960), 5–8 | MR | Zbl

[15] V. S. Videnskii, “Ekstremalnye otsenki proizvodnykh polinoma na otrezke”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Fizmatgiz, M., 1961, 98–106 | MR | Zbl

[16] V. I. Smirnov, N. A. Lebedev, Functions of a complex variable: Constructive theory, The M.I.T. Press, Cambridge, Mass., 1968, 488 pp. | MR | MR | Zbl | Zbl

[17] V. N. Rusak, “Ob otsenkakh proizvodnykh algebraicheskikh drobei na konechnom otrezke”, Dokl. AN BSSR, 20:1 (1976), 5–7 | MR | Zbl

[18] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU im. V. I. Lenina, Minsk, 1979, 174 pp. | MR

[19] V. N. Dubinin, “Conformal mappings and inequalities for algebraic polynomials”, St. Petersburg Math. J., 13:5 (2002), 717–737 | MR | Zbl

[20] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, R.I., 1964, viii+493 pp. | MR | MR | Zbl | Zbl

[21] A. V. Olesov, “Differential inequalities for entire functions of finite degree and rational functions with prescribed poles”, Siberian Math. J., 51:6 (2010), 1104–1124 | DOI | MR | Zbl

[22] W. K. Hayman, P. B. Kennedy, Subharmonic functions, v. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976, xvii+284 pp. | MR | MR | Zbl | Zbl

[23] B. Nagy, V. Totik, “Bernstein's inequality for algebraic polynomials on circular arcs”, Constr. Approx., 37:2 (2013), 223–232 | DOI | MR | Zbl

[24] F. Peherstorfer, R. Steinbauer, “Strong asymptotics of orthonormal polynomials with the aid of Green's function”, SIAM J. Math. Anal., 32:2 (2000), 385–402 (electronic) | DOI | MR | Zbl

[25] V. K. Dzyadyk, I A. Shevchuk, Theory of uniform approximation of functions by polynomials, transl. from the Russian, Walter de Gruyter GmbH Co. KG, Berlin, 2008, xvi+480 pp. | MR | Zbl

[26] C. N. Bernshtein, Sobranie sochinenii (1905–1930), v. I, Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1952, 581 pp. | MR | Zbl

[27] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl