A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1387-1412
Voir la notice de l'article provenant de la source Math-Net.Ru
In a paper of Oshemkov and Sharko, three-colour graphs were used to make the topological equivalence of Morse-Smale flows on surfaces obtained by Peixoto more precise. In the present paper, in the language of three-colour graphs equipped with automorphisms, we obtain a complete (including
realization) topological classification of gradient-like cascades on surfaces.
Bibliography: 25 titles.
Keywords:
Morse-Smale diffeomorphism, gradient-like diffeomorphism, three-colour graph, topological classification.
@article{SM_2014_205_10_a1,
author = {V. Z. Grines and S. H. Kapkaeva and O. V. Pochinka},
title = {A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces},
journal = {Sbornik. Mathematics},
pages = {1387--1412},
publisher = {mathdoc},
volume = {205},
number = {10},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a1/}
}
TY - JOUR AU - V. Z. Grines AU - S. H. Kapkaeva AU - O. V. Pochinka TI - A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces JO - Sbornik. Mathematics PY - 2014 SP - 1387 EP - 1412 VL - 205 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2014_205_10_a1/ LA - en ID - SM_2014_205_10_a1 ER -
%0 Journal Article %A V. Z. Grines %A S. H. Kapkaeva %A O. V. Pochinka %T A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces %J Sbornik. Mathematics %D 2014 %P 1387-1412 %V 205 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2014_205_10_a1/ %G en %F SM_2014_205_10_a1
V. Z. Grines; S. H. Kapkaeva; O. V. Pochinka. A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1387-1412. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a1/