A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1387-1412

Voir la notice de l'article provenant de la source Math-Net.Ru

In a paper of Oshemkov and Sharko, three-colour graphs were used to make the topological equivalence of Morse-Smale flows on surfaces obtained by Peixoto more precise. In the present paper, in the language of three-colour graphs equipped with automorphisms, we obtain a complete (including realization) topological classification of gradient-like cascades on surfaces. Bibliography: 25 titles.
Keywords: Morse-Smale diffeomorphism, gradient-like diffeomorphism, three-colour graph, topological classification.
@article{SM_2014_205_10_a1,
     author = {V. Z. Grines and S. H. Kapkaeva and O. V. Pochinka},
     title = {A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1387--1412},
     publisher = {mathdoc},
     volume = {205},
     number = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - S. H. Kapkaeva
AU  - O. V. Pochinka
TI  - A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1387
EP  - 1412
VL  - 205
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_10_a1/
LA  - en
ID  - SM_2014_205_10_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A S. H. Kapkaeva
%A O. V. Pochinka
%T A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces
%J Sbornik. Mathematics
%D 2014
%P 1387-1412
%V 205
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_10_a1/
%G en
%F SM_2014_205_10_a1
V. Z. Grines; S. H. Kapkaeva; O. V. Pochinka. A three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1387-1412. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a1/