Topology of codimension-one foliations of nonnegative curvature.~II
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1373-1386
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a 3-connected closed manifold $M$ of dimension $n\geqslant 5$ does not admit a codimension-one $C^2$-foliation of nonnegative curvature. In particular, this gives a complete answer to a question of Stuck on the existence of codimension-one foliations of nonnegative curvature on spheres. We also consider codimension-one $C^2$-foliations of nonnegative Ricci curvature on a closed manifold $M$ with leaves having finitely generated fundamental group, and show that such a foliation is flat if and only if $M$ is a $K(\pi,1)$-manifold.
Bibliography: 13 titles.
Keywords:
Riemannian manifold, curvature.
Mots-clés : foliation
Mots-clés : foliation
@article{SM_2014_205_10_a0,
author = {D. V. Bolotov},
title = {Topology of codimension-one foliations of nonnegative {curvature.~II}},
journal = {Sbornik. Mathematics},
pages = {1373--1386},
publisher = {mathdoc},
volume = {205},
number = {10},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a0/}
}
D. V. Bolotov. Topology of codimension-one foliations of nonnegative curvature.~II. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1373-1386. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a0/