Topology of codimension-one foliations of nonnegative curvature.~II
Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1373-1386

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a 3-connected closed manifold $M$ of dimension $n\geqslant 5$ does not admit a codimension-one $C^2$-foliation of nonnegative curvature. In particular, this gives a complete answer to a question of Stuck on the existence of codimension-one foliations of nonnegative curvature on spheres. We also consider codimension-one $C^2$-foliations of nonnegative Ricci curvature on a closed manifold $M$ with leaves having finitely generated fundamental group, and show that such a foliation is flat if and only if $M$ is a $K(\pi,1)$-manifold. Bibliography: 13 titles.
Keywords: Riemannian manifold, curvature.
Mots-clés : foliation
@article{SM_2014_205_10_a0,
     author = {D. V. Bolotov},
     title = {Topology of codimension-one foliations of nonnegative {curvature.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1373--1386},
     publisher = {mathdoc},
     volume = {205},
     number = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2014_205_10_a0/}
}
TY  - JOUR
AU  - D. V. Bolotov
TI  - Topology of codimension-one foliations of nonnegative curvature.~II
JO  - Sbornik. Mathematics
PY  - 2014
SP  - 1373
EP  - 1386
VL  - 205
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2014_205_10_a0/
LA  - en
ID  - SM_2014_205_10_a0
ER  - 
%0 Journal Article
%A D. V. Bolotov
%T Topology of codimension-one foliations of nonnegative curvature.~II
%J Sbornik. Mathematics
%D 2014
%P 1373-1386
%V 205
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2014_205_10_a0/
%G en
%F SM_2014_205_10_a0
D. V. Bolotov. Topology of codimension-one foliations of nonnegative curvature.~II. Sbornik. Mathematics, Tome 205 (2014) no. 10, pp. 1373-1386. http://geodesic.mathdoc.fr/item/SM_2014_205_10_a0/