The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system
Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1347-1390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The distribution of the zeros of the Hermite-Padé polynomials of the first kind for a pair of functions with an arbitrary even number of common branch points lying on the real axis is investigated under the assumption that this pair of functions forms a generalized complex Nikishin system. It is proved (Theorem 1) that the zeros have a limiting distribution, which coincides with the equilibrium measure of a certain compact set having the $\mathscr S$-property in a harmonic external field. The existence problem for $\mathscr S$-compact sets is solved in Theorem 2. The main idea of the proof of Theorem 1 consists in replacing a vector equilibrium problem in potential theory by a scalar problem with an external field and then using the general Gonchar-Rakhmanov method, which was worked out in the solution of the `$1/9$'-conjecture. The relation of the result obtained here to some results and conjectures due to Nuttall is discussed. Bibliography: 51 titles.
Keywords: distribution of zeros, stationary compact set, Nuttall condenser.
Mots-clés : orthogonal polynomials, Hermite-Padé polynomials
@article{SM_2013_204_9_a5,
     author = {E. A. Rakhmanov and S. P. Suetin},
     title = {The distribution of the zeros of the {Hermite-Pad\'e} polynomials for a~pair of functions forming {a~Nikishin} system},
     journal = {Sbornik. Mathematics},
     pages = {1347--1390},
     year = {2013},
     volume = {204},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a5/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
AU  - S. P. Suetin
TI  - The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1347
EP  - 1390
VL  - 204
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_9_a5/
LA  - en
ID  - SM_2013_204_9_a5
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%A S. P. Suetin
%T The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system
%J Sbornik. Mathematics
%D 2013
%P 1347-1390
%V 204
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2013_204_9_a5/
%G en
%F SM_2013_204_9_a5
E. A. Rakhmanov; S. P. Suetin. The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1347-1390. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a5/

[1] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl

[2] J. Nuttall, “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl

[3] R. K. Kovacheva, S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade dlya sistemy iz trekh funktsii i suschestvovanie kondensatora Nattolla”, Tr. MIAN (to appear)

[4] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[5] J. Nuttall, “Hermite–Padé approximants to functions meromorphic on a Riemann surface”, J. Approx. Theory, 32:3 (1981), 233–240 | DOI | MR | Zbl

[6] J. Nuttall, G. M. Trojan, “Asymptotics of Hermite–Padé polynomials for a set of functions with different branch points”, Constr. Approx., 3:1 (1987), 13–29 | DOI | MR | Zbl

[7] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[8] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory (Tampa, FL, USA, 1990), Springer Ser. Comput. Math., 19, Springer-Verlag, New York, 1992, 169–190 | MR | Zbl

[9] A. Martinez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Sb. Math., 202:12 (2011), 1831–1852 | DOI | DOI | MR | Zbl

[10] V. I. Buslaev, A. Martinez-Finkelshtein, S. P. Suetin, “Method of interior variations and existence of $S$-compact sets”, Proc. Steklov Inst. Math., 279 (2012), 25–51 | DOI

[11] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[12] E. A. Rakhmanov, “Orthogonal polynomials and $\mathscr S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR

[13] A. Martínez-Finkelshtein, E. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl

[14] S. P. Suetin, “An analogue of the Hadamard and Schiffer variational formulas”, Theoret. and Math. Phys., 170:3 (2012), 274–279 | DOI | DOI

[15] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl

[16] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Pade approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[17] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[18] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[19] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[20] M. A. Lapik, “Equilibrium measure for the vector logarithmic potential problem with an external field and the Nikishin interaction matrix”, Russian Math. Surveys, 67:3 (2012), 579–581 | DOI | DOI | MR | Zbl

[21] W. V. Zudilin, “Arithmetic hypergeometric series”, Russian Math. Surveys, 66:2 (2011), 369–420 | DOI | DOI | MR | Zbl

[22] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl

[23] A. I. Aptekarev, V. A. Kalyagin, Asimptotika kornya $n$-i stepeni iz polinomov sovmestnoi ortogonalnosti i algebraicheskie funktsii, Preprint No 60, In-t prikl. matem. im. M. V. Keldysha, M., 1986 | MR

[24] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | MR | Zbl

[25] A. I. Aptekarev, D. N. Tulyakov, Geometry of Hermite–Padé approximants for system of functions $\{f,f^2\}$ with three branch points, KIAM Preprint No 77, KIAM, Moscow, 2012; } {\tt http://library.keldysh.ru/preprint.asp?id=2012-77&lg=e

[26] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, Int. Math. Res. Pap. IMRP, 2008, ID 007 | DOI | MR | Zbl

[27] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium measure and the S-property of a stationary compact set”, Russian Math. Surveys, 66:1 (2011), 176–178 | DOI | Zbl

[28] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Padé–Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the -property of stationary compact sets”, Russian Math. Surveys, 66:6 (2011), 1015–1048 | DOI | DOI | MR | Zbl

[29] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl

[30] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl

[31] H. Stahl, “The convergence of Pade approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[32] A. Deano, D. Huybrechs, A. B. J. Kuijlaars, “Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature”, J. Approx. Theory, 162:12 (2010), 2202–2224 | DOI | MR | Zbl

[33] G. V. Kuz'mina, “Moduli of families of curves and quadratic differentials”, Proc. Steklov Inst. Math., 139:1 (1982), 1–231 | MR | Zbl | Zbl

[34] A. Martínez-Finkelshtein, E. A. Rakhmanov, “On asymptotic behavior of Heine–Stieltjes and Van Vleck polynomials”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 209–232 | MR | Zbl

[35] V. I. Buslaev, “Convergence of multipoint Pade approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222 | DOI | DOI

[36] A. A. Gončar, “On the speed of rational approximation of some analytic functions”, Math. USSR-Sb., 34:2 (1978), 131–145 | DOI | MR | Zbl | Zbl

[37] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potential”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[38] A. A. Gonchar, “Rational approximation of analytic functions”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S44–S57 | DOI | DOI | MR

[39] E. A. Rakhmanov, “The asymptotics of Hermite–Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134 | DOI | DOI | MR | Zbl

[40] A. I. Aptekarev, V. I. Buslaev, A. Martinez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl

[41] S. P. Suetin, “Asymptotics of the denominators of the diagonal Padé approximations of orthogonal expansions”, Dokl. Math., 56:2 (1997), 774–776 | MR | Zbl

[42] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl

[43] Ch. Remling, “Uniqueness of reflectionless Jacobi matrices and the Denisov–Rakhmanov theorem”, Proc. Amer. Math. Soc., 139:6 (2011), 2175–2182 | DOI | MR | Zbl

[44] S. P. Suetin, “Comparative asymptotics of solutions and trace formulas for a class of difference equations”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S96–S137 | DOI | DOI | MR | Zbl

[45] A. V. Komlov, S. P. Suetin, “Widom's formula for the leading coefficient of a polynomial which is orthonormal with respect to a varying weight”, Russian Math. Surveys, 67:1 (2012), 183–185 | DOI | DOI | MR | Zbl

[46] A. V. Komlov, S. P. Suetin, “An asymptotic formula for polynomials orthonormal with respect to a varying weight”, Trans. Mosc. Math. Soc., 2012, 139–159 | DOI | Zbl

[47] S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373 | DOI | DOI | MR | Zbl

[48] A. A. Gončar, G. L. Lopes, “On Markov's theorem for multipoint Padé approximants”, Math. USSR-Sb., 34:4 (1978), 449–459 | DOI | MR | Zbl | Zbl

[49] J. Nuttall, “Padé polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl

[50] A. I. Aptekarev, W. Van Assche, “Scalar and matrix Riemann-Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight”, J. Approx. Theory, 129:2 (2004), 129–166 | DOI | MR | Zbl