On spectral synthesis on zero-dimensional Abelian groups
Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1332-1346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let $C(G)$ be the space of all complex-valued continuous functions on $G$. A closed linear subspace $\mathscr H\subseteq C(G)$ is said to be an invariant subspace if it is invariant with respect to the translations $\tau_y\colon f(x)\mapsto f(x+y)$, $y\in G$. In the paper, it is proved that any invariant subspace $\mathscr H$ admits spectral synthesis, that is, $\mathscr H$ coincides with the closed linear span of the characters of $G$ belonging to $\mathscr H$. Bibliography: 25 titles.
Keywords: spectral synthesis, locally compact Abelian group, zero-dimensional group, invariant subspace
Mots-clés : Fourier transform on groups.
@article{SM_2013_204_9_a4,
     author = {S. S. Platonov},
     title = {On spectral synthesis on zero-dimensional {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {1332--1346},
     year = {2013},
     volume = {204},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - On spectral synthesis on zero-dimensional Abelian groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1332
EP  - 1346
VL  - 204
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/
LA  - en
ID  - SM_2013_204_9_a4
ER  - 
%0 Journal Article
%A S. S. Platonov
%T On spectral synthesis on zero-dimensional Abelian groups
%J Sbornik. Mathematics
%D 2013
%P 1332-1346
%V 204
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/
%G en
%F SM_2013_204_9_a4
S. S. Platonov. On spectral synthesis on zero-dimensional Abelian groups. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1332-1346. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/

[1] L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48 (1947), 857–929 | MR | Zbl

[2] J. E. Gilbert, “On the ideal structure of some algebras of analytic functions”, Pacif. J. of Math., 35:3 (1978), 625–634 | DOI | MR | Zbl

[3] S. S. Platonov, “Spectral synthesis in some topological vector spaces of functions”, St. Petersburg Math. J., 22:5 (2011), 813–833 | DOI | MR | Zbl

[4] D. I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 116–120 | DOI | MR | Zbl

[5] L. Schwartz, “Analyse et syntèse harmoniques dans les espaces de distributions Canadian J. Math.”, 3, 1951, 503–512 | DOI | MR | Zbl

[6] L. Székelyhidi, Discrete spectral synthesis and its applications, Springer Monogr. Math., Springer-Verlag, Berlin, 2006 | MR | Zbl

[7] M. Lefranc, “Analyse spectrale sur $Z_n$”, C. R. Acad. Sci. Paris, 246 (1958), 1951–1953 | MR | Zbl

[8] L. Székelyhidi, “On discrete spectral synthesis”, Functional equations – results and advances, Adv. Math. (Dordr.), 3, Kluwer Acad. Publ., Dordrecht, 2005, 263–274 | MR | Zbl

[9] A. Bereczky, L. Székelyhidi, “Spectral synthesis on torsion groups”, J. Math. Anal. Appl., 304:2 (2005), 607–613 | DOI | MR | Zbl

[10] S. S. Platonov, “Spectral synthesis in the space of functions of exponential growth on a finitely generated Abelian group”, St. Petersburg Math. J., 24:4 (2013), 663–675 | DOI

[11] L. Székelyhidi, “Spectral synthesis problems on locally compact groups”, Monatsh. Math., 161:2 (2010), 223–232 | DOI | MR | Zbl

[12] L. Pontrjagin, Topological groups, Princeton Math. Ser., 2, Princeton Univ. Press, Princeton, 1939 | MR | MR | Zbl | Zbl

[13] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren Math. Wiss., 115, Springer-Verlag, Berlin–New York, 1979 | MR | MR | Zbl

[14] S. A. Morris, Pontryagin duality and the structure of locally compact Abelian groups, Cambridge Univ. Press, Cambridge, 1977 | MR | MR | Zbl | Zbl

[15] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[16] B. I. Golubov, Elementy dvoichnogo analiza, Izd-vo URSS, M., 2005 | MR | Zbl

[17] S. F. Lukomskii, “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sb. Math., 201:5 (2010), 669–691 | DOI | DOI | MR | Zbl

[18] S. S. Volosivets, “The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications”, Sb. Math., 203:5 (2012), 613–644 | DOI | DOI | MR | Zbl

[19] Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | DOI | MR | Zbl

[20] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Scientific, River Edge, NJ, 1994 | MR | MR | Zbl | Zbl

[21] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16:5 (2010), 693–714 | DOI | MR | Zbl

[22] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Izdatelstvo “Elm”, Baku, 1981 | MR | Zbl

[23] T. S. Quek, “Littlewood–Paley and multiplier theorems on weighted spaces over locally compact Vilenkin groups”, J. Math. Anal. Appl., 210:2 (1997), 742–754 | DOI | MR | Zbl

[24] A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Math., 53, Cambridge Univ. Press, Cambridge, 1964 | MR | MR | Zbl | Zbl

[25] R. E. Edwards, Functional analysis. Theory and applications, Holt Rinehart and Winston, New York–Toronto–London, 1965 | MR | Zbl | Zbl