On spectral synthesis on zero-dimensional Abelian groups
Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1332-1346
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let $C(G)$ be the space of all complex-valued continuous functions on $G$. A closed linear subspace $\mathscr H\subseteq C(G)$ is said to be an invariant subspace if it is invariant with respect to the translations $\tau_y\colon f(x)\mapsto f(x+y)$, $y\in G$. In the paper, it is proved that any invariant subspace $\mathscr H$ admits spectral synthesis, that is, $\mathscr H$ coincides with the closed linear span of the characters
of $G$ belonging to $\mathscr H$.
Bibliography: 25 titles.
Keywords:
spectral synthesis, locally compact Abelian group, zero-dimensional group, invariant subspace
Mots-clés : Fourier transform on groups.
Mots-clés : Fourier transform on groups.
@article{SM_2013_204_9_a4,
author = {S. S. Platonov},
title = {On spectral synthesis on zero-dimensional {Abelian} groups},
journal = {Sbornik. Mathematics},
pages = {1332--1346},
publisher = {mathdoc},
volume = {204},
number = {9},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/}
}
S. S. Platonov. On spectral synthesis on zero-dimensional Abelian groups. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1332-1346. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/