On spectral synthesis on zero-dimensional Abelian groups
Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1332-1346

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let $C(G)$ be the space of all complex-valued continuous functions on $G$. A closed linear subspace $\mathscr H\subseteq C(G)$ is said to be an invariant subspace if it is invariant with respect to the translations $\tau_y\colon f(x)\mapsto f(x+y)$, $y\in G$. In the paper, it is proved that any invariant subspace $\mathscr H$ admits spectral synthesis, that is, $\mathscr H$ coincides with the closed linear span of the characters of $G$ belonging to $\mathscr H$. Bibliography: 25 titles.
Keywords: spectral synthesis, locally compact Abelian group, zero-dimensional group, invariant subspace
Mots-clés : Fourier transform on groups.
@article{SM_2013_204_9_a4,
     author = {S. S. Platonov},
     title = {On spectral synthesis on zero-dimensional {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {1332--1346},
     publisher = {mathdoc},
     volume = {204},
     number = {9},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - On spectral synthesis on zero-dimensional Abelian groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1332
EP  - 1346
VL  - 204
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/
LA  - en
ID  - SM_2013_204_9_a4
ER  - 
%0 Journal Article
%A S. S. Platonov
%T On spectral synthesis on zero-dimensional Abelian groups
%J Sbornik. Mathematics
%D 2013
%P 1332-1346
%V 204
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/
%G en
%F SM_2013_204_9_a4
S. S. Platonov. On spectral synthesis on zero-dimensional Abelian groups. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1332-1346. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a4/