Mots-clés : white noise perturbation
@article{SM_2013_204_9_a3,
author = {Yu. Yu. Klevtsova},
title = {On the existence of a~stationary measure for the stochastic system of the {Lorenz} model describing a~baroclinic atmosphere},
journal = {Sbornik. Mathematics},
pages = {1307--1331},
year = {2013},
volume = {204},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a3/}
}
TY - JOUR AU - Yu. Yu. Klevtsova TI - On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere JO - Sbornik. Mathematics PY - 2013 SP - 1307 EP - 1331 VL - 204 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2013_204_9_a3/ LA - en ID - SM_2013_204_9_a3 ER -
%0 Journal Article %A Yu. Yu. Klevtsova %T On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere %J Sbornik. Mathematics %D 2013 %P 1307-1331 %V 204 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2013_204_9_a3/ %G en %F SM_2013_204_9_a3
Yu. Yu. Klevtsova. On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1307-1331. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a3/
[1] Yu. Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517 | DOI | DOI | MR
[2] B. V. Paltsev, Sfericheskie funktsii, Uchebno-metodicheskoe posobie, MFTI, M., 2000
[3] V. P. Dymnikov, Ustoichivost i predskazuemost krupnomasshtabnykh atmosfernykh protsessov, IVM RAN, M., 2007
[4] M. S. Agranovich, “Elliptic singular integro-differential operators”, Russian Math. Surveys, 20:5 (1965), 1–121 | DOI | MR | Zbl
[5] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl
[6] Yu. N. Skiba, Matematicheskie voprosy dinamiki vyazkoi barotropnoi zhidkosti na vraschayuscheisya sfere, OVM AN SSSR, M., 1989
[7] S. G. Mikhlin, Multidimensional singular integrals and integral equations, Pergamon Press, Oxford–London–New York, 1965 | MR | MR | Zbl | Zbl
[8] S. G. Mikhlin, The problem of the minimum of a quadratic functional, Holden-Day, San Francisco–London–Amsterdam, 1965 | MR | MR | Zbl
[9] S. G. Mikhlin, “Differentsirovanie ryadov po sfericheskim funktsiyam”, Dokl. AN SSSR, 126:2 (1959), 278–279 | MR | Zbl
[10] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR
[11] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005
[12] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, Springer-Verlag, New York, 1996 | MR | Zbl
[13] O. Knill, Probability theory and stochastic processes with applications, Overseas Press, New Delhi, 2009
[14] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[15] I. M. Gel'fand, N. Ya. Vilenkin, Generalized functions, v. 4, Applications of harmonic analysis, Academic Press, New York–London, 1964 | MR | MR | Zbl | Zbl
[16] K. Kuratowski, Topology, v. 1, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl
[17] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. II, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl
[18] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Mathematics, 194, Cambridge Univ. Press, Cambridge, 2012 | Zbl
[19] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland, Amsterdam–Oxford–New York, 1981 | MR | Zbl | Zbl
[20] Yu. N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[21] V. N. Krupchatnikov, G. P. Kurbatkin, Modelirovanie krupnomasshtabnoi dinamiki atmosfery. Metody diagnoza obschei tsirkulyatsii, VTs, Sib. otd-nie AN SSSR, Novosibirsk, 1991
[22] V. P. Dymnikov, A. N. Filatov, Mathematics of climate modeling, Model. Simul. Sci. Eng. Technol., Birkhäuser, Boston, MA, 1997 | MR | Zbl | Zbl
[23] A. S. Gorelov, “Dimension of the attractor for a two-layer baroclinic model”, Dokl. Earth Sciences, 345A:9 (1996), 1–7 | MR