A formula for the weight of a minimal filling of a finite metric space
Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1285-1306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of finding a minimal filling for a finite metric space, that is, a weighted graph of minimal weight joining a given finite metric space. We obtain a minimax formula for the weight of the minimal filling, which we use to prove various properties of minimal fillings. Bibliography: 10 titles.
Keywords: minimal filling, finite metric spaces, graph, Gromov's problem, perimeter of a metric space.
@article{SM_2013_204_9_a2,
     author = {A. Yu. Eremin},
     title = {A formula for the weight of a~minimal filling of a~finite metric space},
     journal = {Sbornik. Mathematics},
     pages = {1285--1306},
     year = {2013},
     volume = {204},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a2/}
}
TY  - JOUR
AU  - A. Yu. Eremin
TI  - A formula for the weight of a minimal filling of a finite metric space
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1285
EP  - 1306
VL  - 204
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_9_a2/
LA  - en
ID  - SM_2013_204_9_a2
ER  - 
%0 Journal Article
%A A. Yu. Eremin
%T A formula for the weight of a minimal filling of a finite metric space
%J Sbornik. Mathematics
%D 2013
%P 1285-1306
%V 204
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2013_204_9_a2/
%G en
%F SM_2013_204_9_a2
A. Yu. Eremin. A formula for the weight of a minimal filling of a finite metric space. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1285-1306. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a2/

[1] A. O. Ivanov, A. A. Tuzhilin, “One-dimensional Gromov minimal filling problem”, Sb. Math., 203:5 (2012), 677–726 | DOI | DOI | MR | Zbl

[2] A. O. Ivanov, A. A. Tuzhilin, “Geometry of minimal networks and the one-dimensional Plateau problem”, Russian Math. Surveys, 47:2 (1992), 59–131 | DOI | MR | Zbl

[3] M. Gromov, “Filling Riemannian manifolds”, J. Differential Geom., 18:1 (1983), 1–147 | MR | Zbl

[4] A. O. Ivanov, Z. N. Ovsyannikov, N. P. Strelkova, A. A. Tuzhilin, “One-dimensional minimal fillings with negative edge weights”, Moscow Univ. Math. Bull., 67:5–6 (2012), 189–194 | DOI | Zbl

[5] O. Melnikov, R. I. Tyshkevich, V. A. Yemelichev, V. I. Sarvanov, Lectures on graph theory, Wissenschaftsverlag, Mannheim, 1994 | MR | MR | Zbl | Zbl

[6] A. S. Solodovnikov, “Sistemy lineinykh neravenstv”, Populyarnye lektsii po matematike, vyp. 48, Nauka, M., 1977, 65–70 | MR

[7] A. T. Fomenko, “On minimal volumes of topological globally minimal surfaces in cobordisms”, Math. USSR-Izv., 18:1 (1982), 163–183 | DOI | MR | Zbl | Zbl

[8] A. T. Fomenko, “Multi-dimensional variational methods in the topology of extremals”, Russian Math. Surveys, 36:6 (1981), 127–165 | DOI | MR | Zbl

[9] A. T. Fomenko, “Minimal compacta in riemannian manifolds and reifenberg's conjecture”, Math. USSR-Izv., 6:5 (1972), 1037–1066 | DOI | MR | Zbl

[10] A. T. Fomenko, “The multidimensional plateau problem in riemannian manifolds”, Math. USSR-Sb., 18:3 (1972), 487–527 | DOI | MR | Zbl