Conformally flat Lorentzian manifolds with special holonomy groups
Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1264-1284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a local classification of conformally flat Lorentzian manifolds with special holonomy groups. The corresponding local metrics are certain extensions of Riemannian spaces of constant sectional curvature to Walker metrics. Bibliography: 28 titles.
Keywords: Lorentzian manifold, special holonomy group, Walker manifold, conformally flat manifold, Nordström's gravity.
@article{SM_2013_204_9_a1,
     author = {A. S. Galaev},
     title = {Conformally flat {Lorentzian} manifolds with special holonomy groups},
     journal = {Sbornik. Mathematics},
     pages = {1264--1284},
     year = {2013},
     volume = {204},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a1/}
}
TY  - JOUR
AU  - A. S. Galaev
TI  - Conformally flat Lorentzian manifolds with special holonomy groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1264
EP  - 1284
VL  - 204
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_9_a1/
LA  - en
ID  - SM_2013_204_9_a1
ER  - 
%0 Journal Article
%A A. S. Galaev
%T Conformally flat Lorentzian manifolds with special holonomy groups
%J Sbornik. Mathematics
%D 2013
%P 1264-1284
%V 204
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2013_204_9_a1/
%G en
%F SM_2013_204_9_a1
A. S. Galaev. Conformally flat Lorentzian manifolds with special holonomy groups. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1264-1284. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a1/

[1] M. Kurita, “On the holonomy groups of the conformally flat Riemannian manifold”, Nagoya Math. J., 9 (1955), 161–171 | MR | Zbl

[2] R. Bryant, “Classical, exceptional, and exotic holonomies: a status report”, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Semin. Congr., 1, Soc. Math. France, Paris, 1996, 93–165 | MR | Zbl

[3] A. Galaev, Th. Leistner, “Holonomy groups of Lorentzian manifolds: classification, examples, and applications”, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 53–96 | MR | Zbl

[4] M. Brozos-Vázquez, E. Garcia-Rio, P. Gilkey, S. Nikčević, R. Vázquez-Lorenzo, The geometry of Walker manifolds (San Rafael, CA), Synth. Lect. Math. Stat., 5, Morgan Claypool Publ., Williston, VT, 2009 | MR | Zbl

[5] Th. Leistner, P. Nurowski, “Ambient metrics for $n$-dimensional $pp$-waves”, Comm. Math. Phys., 296:3 (2010), 881–898 | DOI | MR | Zbl

[6] G. S. Hall, D. P. Lonie, “Holonomy groups and spacetimes”, Classical Quantum Gravity, 17:6 (2000), 1369–1382 | DOI | MR | Zbl

[7] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions of Einstein's field equations, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[8] R. Ghanam, G. Thompson, “Two special metrics with $R_{14}$-type holonomy”, Classical Quantum Gravity, 18:11 (2001), 2007–2014 | DOI | MR | Zbl

[9] J. D. Norton, “Einstein, Nordström and the early demise of scalar, Lorentz-covariant theories of gravitation”, Arch. Hist. Exact Sci., 45:1 (1992), 17–94 | DOI | MR | Zbl

[10] N. Ravndal, “Scalar gravitation and extra dimensions”, Proceedings of the Gunnar Nordström Symposium on Theoretical Physics, Comment. Phys.-Math., 166, Finn. Soc. Sci. Lett., Helsinki, 2004, 151–164 | MR

[11] V. P. Vizgin, Relyativistskaya teoriya tyagoteniya (istoki i formirovanie, 1900–1915), Nauka, M., 1981 | MR | Zbl

[12] G. W. Gibbons, C. N. Pope, “Time-dependent multi-centre solutions from new metrics with holonomy $\operatorname{Sim}(n-2)$”, Classical Quantum Gravity, 25:12 (2008), ID 125015 | DOI | MR | Zbl

[13] H. Baum, “Conformal Killing spinors and the holonomy problem in Lorentzian geometry – a survey of new results”, Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 251–264 | DOI | MR | Zbl

[14] Ya. V. Bazaikin, “Globally hyperbolic Lorentzian spaces with special holonomy groups”, Siberian Math. J., 50:4 (2009), 567–579 | DOI | MR | Zbl

[15] G. Hall, “Projective relatedness and conformal flatness”, Cent. Eur. J. Math., 10:5 (2012), 1763–1770 | DOI | MR | Zbl

[16] D. V. Alekseevskii, B. N. Kimel'fel'd, “Classification of homogeneous conformally flat Riemannian manifolds”, Math. Notes, 24:1 (1978), 559–562 | DOI | MR | Zbl | Zbl

[17] V. F. Kirichenko, “Conformally flat and locally conformal Kähler manifolds”, Math. Notes, 51:5 (1992), 462–468 | DOI | MR | Zbl

[18] V. V. Slavskii, “Conformally-flat metrics and pseudo-Euclidean geometry”, Siberian Math. J., 35:3 (1994), 605–613 | DOI | MR | Zbl

[19] M. Erdogan, T. Ikawa, “On conformally flat Lorentzian spaces satisfying a certain condition on the Ricci tensor”, Indian J. Pure Appl. Math., 26:5 (1995), 417–424 | MR | Zbl

[20] K. Honda, “Conformally flat semi-riemannian manifolds with commuting curvature and Ricci operators”, Tokyo J. Math., 26:1 (2003), 241–260 | DOI | MR | Zbl

[21] K. Honda, K. Tsukada, “Conformally flat semi-Riemannian manifolds with nilpotent Ricci operators and affine differential geometry”, Ann. Global Anal. Geom., 25:3 (2004), 253–275 | DOI | MR | Zbl

[22] K. Honda, K. Tsukada, “Three-dimensional conformally flat homogeneous Lorentzian manifolds”, J. Phys. A, 40:4 (2007), 831–851 | MR | Zbl

[23] D. V. Alekseevsky, A. S. Galaev, “Two-symmetric Lorentzian manifolds”, J. Geom. Phys., 61:12 (2011), 2331–2340 | DOI | MR | Zbl

[24] H. Wu, “On the de Rham decomposition theorem”, Illinois J. Math., 8 (1964), 291–311 | MR | Zbl

[25] K. Yano, “On pseudo-Hermitian and pseudo-Kählerian manifolds”, Proceedings of the International Congress of Mathematicians (Amsterdam, 1954), v. III, North-Holland, Amsterdam, 1954, 190–197 | MR | Zbl

[26] A. S. Galaev, “The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds”, Differential Geom. Appl., 22:1 (2005), 1–18 | DOI | MR | Zbl

[27] A. S. Galaev, “One component of the curvature tensor of a Lorentzian manifold”, J. Geom. Phys., 60:6–8 (2010), 962–971 | DOI | MR | Zbl

[28] A. S. Galaev, T. Leistner, “On the local structure of Lorentzian Einstein manifolds with parallel distribution of null lines”, Classical Quantum Gravity, 27 (2010), ID 225003 | DOI | MR | Zbl