Stabilization of the solution of a doubly nonlinear parabolic equation
Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1239-1263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as $x\to\infty$ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles.
Keywords: doubly nonlinear parabolic equation, rate of decay of the solution, lower estimate, existence of a strong global (in time) solution.
@article{SM_2013_204_9_a0,
     author = {\`E. R. Andriyanova and F. Kh. Mukminov},
     title = {Stabilization of the solution of a~doubly nonlinear parabolic equation},
     journal = {Sbornik. Mathematics},
     pages = {1239--1263},
     year = {2013},
     volume = {204},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a0/}
}
TY  - JOUR
AU  - È. R. Andriyanova
AU  - F. Kh. Mukminov
TI  - Stabilization of the solution of a doubly nonlinear parabolic equation
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1239
EP  - 1263
VL  - 204
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_9_a0/
LA  - en
ID  - SM_2013_204_9_a0
ER  - 
%0 Journal Article
%A È. R. Andriyanova
%A F. Kh. Mukminov
%T Stabilization of the solution of a doubly nonlinear parabolic equation
%J Sbornik. Mathematics
%D 2013
%P 1239-1263
%V 204
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2013_204_9_a0/
%G en
%F SM_2013_204_9_a0
È. R. Andriyanova; F. Kh. Mukminov. Stabilization of the solution of a doubly nonlinear parabolic equation. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1239-1263. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a0/

[1] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[2] P. A. Raviart, “Sur la résolution de certaines équations paraboliques non linéaires”, J. Functional Analysis, 5 (1970), 299–328 | DOI | MR | Zbl

[3] O. Grange, F. Mignot, “Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires”, J. Functional Analysis, 11 (1972), 77–92 | DOI | MR | Zbl

[4] A. Bamberger, “Étude d'une équation doublement non linéaire”, J. Functional Analysis, 24 (1977), 148–155 | DOI | MR | Zbl

[5] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl

[6] F. Bernis, “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279:3 (1988), 373–394 | DOI | MR | Zbl

[7] E. R. Andriyanova, F. Kh. Mukminov, “Otsenka snizu skorosti ubyvaniya resheniya parabolicheskogo uravneniya s dvoinoi nelineinostyu”, Ufimsk. matem. zhurn., 3:3 (2011), 3–14 | Zbl

[8] L. M. Kozhevnikova, A. A. Leontev, “Otsenki resheniya anizotropnogo parabolicheskogo uravneniya s dvoinoi nelineinostyu”, Ufimsk. matem. zhurn., 3:4 (2011), 64–85 | Zbl

[9] A. K. Gushchin, “The estimates of the solutions of boundary value problems for a second order parabolic equation”, Proc. Steklov Inst. Math., 126 (1973), 1–46 | MR | Zbl

[10] N. Alikakos, R. Rostamian, “Gradient estimates for degenerate diffusion equations. II”, Proc. Roy. Soc. Edinburgh Sect. A, 91:3–4 (1982), 335–346 | DOI | MR | Zbl

[11] A. F. Tedeev, “Stabilization of the solutions of initial-boundary value problems for quasilinear parabolic equations”, Izv. Math., 44:10 (1992), 1325–1334 | DOI | Zbl

[12] L. M. Kozhevnikova, “Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains”, Izv. Math., 74:2 (2010), 325–345 | DOI | DOI | MR | Zbl

[13] R. Kh. Karimov, L. M. Kozhevnikova, “Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries”, Sb. Math., 201:9 (2010), 1249–1271 | DOI | DOI | MR | Zbl

[14] L. M. Kozhevnikova, F. Kh. Mukminov, “Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains”, Proc. Steklov Inst. Math., 278 (2012), 106–120 | DOI

[15] M. A. Xerrero, J. L. Vázquez, “Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem”, Ann. Fac. Sci. Toulouse Math. (5), 3:2 (1981), 113–127 | DOI | MR

[16] J. L. Vázques, The porous medium equation, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2007 | MR | Zbl

[17] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[18] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl