Stabilization of the solution of a~doubly nonlinear parabolic equation
Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1239-1263
Voir la notice de l'article provenant de la source Math-Net.Ru
The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as $x\to\infty$ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one.
Bibliography: 17 titles.
Keywords:
doubly nonlinear parabolic equation, rate of decay of the solution, lower estimate, existence of a strong global (in time) solution.
@article{SM_2013_204_9_a0,
author = {\`E. R. Andriyanova and F. Kh. Mukminov},
title = {Stabilization of the solution of a~doubly nonlinear parabolic equation},
journal = {Sbornik. Mathematics},
pages = {1239--1263},
publisher = {mathdoc},
volume = {204},
number = {9},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_9_a0/}
}
TY - JOUR AU - È. R. Andriyanova AU - F. Kh. Mukminov TI - Stabilization of the solution of a~doubly nonlinear parabolic equation JO - Sbornik. Mathematics PY - 2013 SP - 1239 EP - 1263 VL - 204 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2013_204_9_a0/ LA - en ID - SM_2013_204_9_a0 ER -
È. R. Andriyanova; F. Kh. Mukminov. Stabilization of the solution of a~doubly nonlinear parabolic equation. Sbornik. Mathematics, Tome 204 (2013) no. 9, pp. 1239-1263. http://geodesic.mathdoc.fr/item/SM_2013_204_9_a0/