Reversibility conditions for quantum channels and their applications
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1215-1237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions for a quantum channel (noncommutative Markov operator) to be reversible with respect to complete families of quantum states with bounded rank are obtained. A description of all quantum channels reversible with respect to a given (orthogonal or nonorthogonal) complete family of pure states is given. Some applications in quantum information theory are considered. Bibliography: 20 titles.
Keywords: quantum states, quantum channels, relative entropy, $\chi$-quantity of ensemble of quantum states.
@article{SM_2013_204_8_a6,
     author = {M. E. Shirokov},
     title = {Reversibility conditions for quantum channels and their applications},
     journal = {Sbornik. Mathematics},
     pages = {1215--1237},
     year = {2013},
     volume = {204},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a6/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Reversibility conditions for quantum channels and their applications
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1215
EP  - 1237
VL  - 204
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a6/
LA  - en
ID  - SM_2013_204_8_a6
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Reversibility conditions for quantum channels and their applications
%J Sbornik. Mathematics
%D 2013
%P 1215-1237
%V 204
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a6/
%G en
%F SM_2013_204_8_a6
M. E. Shirokov. Reversibility conditions for quantum channels and their applications. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1215-1237. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a6/

[1] A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., 67, Springer-Verlag, Berlin, 2001 | MR | Zbl

[2] D. Petz, “Sufficiency of channels over von Neumann algebras”, Quart. J. Math. Oxford Ser. (2), 39:153 (1988), 97–108 | DOI | MR | Zbl

[3] M. Ohya, D. Petz, Quantum entropy and its use, Texts Monogr. Phys., Springer-Verlag, Berlin, 1993 | MR | Zbl

[4] A. S. Holevo, Quantum systems, channels, information, De Gruyter Stud. Math. Phys., 16, de Gruyter, Berlin, 2012 | MR | Zbl

[5] F. Hiai, M. Mosonyi, D. Petz, C. Beny, “Quantum $f$-divergences and error correction”, Rev. Math. Phys., 23:7 (2011), 691–747 | DOI | MR | Zbl

[6] A. Jenčová, “Reversibility conditions for quantum operations”, Rev. Math. Phys., 24:7 (2012), 1250016 | DOI | MR | Zbl

[7] M. E. Shirokov, A criterion for coincidence of the entanglement-assisted classical capacity and the Holevo capacity of a quantum channel, arXiv: 1202.3449

[8] T. Ogawa, A. Sasaki, M. Iwamoto, H. Yamamoto, “Quantum secret sharing schemes and reversibility of quantum operations”, Phys. Rev. A, 72 (2005), 032318 | DOI

[9] A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100 | DOI | DOI | MR | Zbl

[10] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Boston–London, Pitman, 1981 | MR | MR | Zbl | Zbl

[11] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, Springer-Verlag, New York–Heidelberg, 1979 | MR | MR | Zbl | Zbl

[12] C. King, K. Matsumoto, M. Nathanson, M. B. Ruskai, “Properties of conjugate channels with applications to additivity and multiplicativity”, Markov Process. Related Fields, 13:2 (2007), 391–423 | MR | Zbl

[13] M. Horodecki, P.W. Shor, M.B. Ruskai, “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 | DOI | MR | Zbl

[14] A. Jencova, D. Petz, “Sufficiency in quantum statistical inference”, Comm. Math. Phys., 263:1 (2006), 259–276 | DOI | MR | Zbl

[15] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[16] B. M. Terhal, P. Horodecki, “Schmidt number for density matrices”, Phys. Rev. A (3), 61:4 (2000), 040301 | DOI | MR

[17] M. E. Shirokov, The Schmidt number and partially entanglement breaking channels in infinite dimensions, arXiv: 1110.4363

[18] A. S. Holevo, “Some estimates of information transmitted through quantum communication channel”, Problems Inform. Transmission, 9:3 (1973), 177–183 | MR | Zbl

[19] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2005), 86–98 | DOI | DOI | MR | Zbl

[20] A. S. Holevo, M. E. Shirokov, “On approximation of infinite-dimensional quantum channels”, Problems Inform. Transmission, 44:2 (2008), 73–90 | DOI | MR