@article{SM_2013_204_8_a6,
author = {M. E. Shirokov},
title = {Reversibility conditions for quantum channels and their applications},
journal = {Sbornik. Mathematics},
pages = {1215--1237},
year = {2013},
volume = {204},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a6/}
}
M. E. Shirokov. Reversibility conditions for quantum channels and their applications. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1215-1237. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a6/
[1] A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., 67, Springer-Verlag, Berlin, 2001 | MR | Zbl
[2] D. Petz, “Sufficiency of channels over von Neumann algebras”, Quart. J. Math. Oxford Ser. (2), 39:153 (1988), 97–108 | DOI | MR | Zbl
[3] M. Ohya, D. Petz, Quantum entropy and its use, Texts Monogr. Phys., Springer-Verlag, Berlin, 1993 | MR | Zbl
[4] A. S. Holevo, Quantum systems, channels, information, De Gruyter Stud. Math. Phys., 16, de Gruyter, Berlin, 2012 | MR | Zbl
[5] F. Hiai, M. Mosonyi, D. Petz, C. Beny, “Quantum $f$-divergences and error correction”, Rev. Math. Phys., 23:7 (2011), 691–747 | DOI | MR | Zbl
[6] A. Jenčová, “Reversibility conditions for quantum operations”, Rev. Math. Phys., 24:7 (2012), 1250016 | DOI | MR | Zbl
[7] M. E. Shirokov, A criterion for coincidence of the entanglement-assisted classical capacity and the Holevo capacity of a quantum channel, arXiv: 1202.3449
[8] T. Ogawa, A. Sasaki, M. Iwamoto, H. Yamamoto, “Quantum secret sharing schemes and reversibility of quantum operations”, Phys. Rev. A, 72 (2005), 032318 | DOI
[9] A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100 | DOI | DOI | MR | Zbl
[10] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Boston–London, Pitman, 1981 | MR | MR | Zbl | Zbl
[11] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, Springer-Verlag, New York–Heidelberg, 1979 | MR | MR | Zbl | Zbl
[12] C. King, K. Matsumoto, M. Nathanson, M. B. Ruskai, “Properties of conjugate channels with applications to additivity and multiplicativity”, Markov Process. Related Fields, 13:2 (2007), 391–423 | MR | Zbl
[13] M. Horodecki, P.W. Shor, M.B. Ruskai, “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 | DOI | MR | Zbl
[14] A. Jencova, D. Petz, “Sufficiency in quantum statistical inference”, Comm. Math. Phys., 263:1 (2006), 259–276 | DOI | MR | Zbl
[15] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[16] B. M. Terhal, P. Horodecki, “Schmidt number for density matrices”, Phys. Rev. A (3), 61:4 (2000), 040301 | DOI | MR
[17] M. E. Shirokov, The Schmidt number and partially entanglement breaking channels in infinite dimensions, arXiv: 1110.4363
[18] A. S. Holevo, “Some estimates of information transmitted through quantum communication channel”, Problems Inform. Transmission, 9:3 (1973), 177–183 | MR | Zbl
[19] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2005), 86–98 | DOI | DOI | MR | Zbl
[20] A. S. Holevo, M. E. Shirokov, “On approximation of infinite-dimensional quantum channels”, Problems Inform. Transmission, 44:2 (2008), 73–90 | DOI | MR