A necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1195-1214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that some combination of the lengths of all edges of the equator of a flexible suspension in Lobachevsky 3-space is equal to zero (each length is taken with a ‘plus’ or ‘minus’ sign in this combination). Bibliography: 10 titles.
Keywords: flexible polyhedron, hyperbolic space, Connelly method, equator of a suspension.
Mots-clés : flexible suspension
@article{SM_2013_204_8_a5,
     author = {D. A. Slutskii},
     title = {A necessary flexibility condition for a~nondegenerate suspension in {Lobachevsky} 3-space},
     journal = {Sbornik. Mathematics},
     pages = {1195--1214},
     year = {2013},
     volume = {204},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a5/}
}
TY  - JOUR
AU  - D. A. Slutskii
TI  - A necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1195
EP  - 1214
VL  - 204
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a5/
LA  - en
ID  - SM_2013_204_8_a5
ER  - 
%0 Journal Article
%A D. A. Slutskii
%T A necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space
%J Sbornik. Mathematics
%D 2013
%P 1195-1214
%V 204
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a5/
%G en
%F SM_2013_204_8_a5
D. A. Slutskii. A necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1195-1214. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a5/

[1] R. Bricard, “Mémoire sur la théorie de l'octaèdre articulé”, Journ. de Math. (5), 3 (1897), 113–148 | Zbl

[2] H. Lebesgue, “Octaèdres articulés de Bricard”, Enseignement Math. (2), 13:3 (1967), 175–185 | MR | Zbl

[3] R. Connelly, “An attack on rigidity”, Bull. Amer. Math. Soc., 81:1 (1975), 566–569 | DOI | MR | MR | Zbl | Zbl

[4] S. N. Mikhalev, “Some necessary metric conditions for flexibility of suspensions”, Moscow Univ. Math. Bull., 56:3 (2001), 14–20 | MR | Zbl

[5] J. W. Anderson, Hyperbolic geometry, Springer Undergrad. Math. Ser., Springer-Verlag, London, 2005 | MR | Zbl

[6] R. Benedetti, C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl

[7] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984 | MR | Zbl

[8] H. Stachel, “Flexible octahedra in the hyperbolic space”, Non-Euclidean geometries (Budapest, Hungary, 2002), Math. Appl. (N. Y.), 581, Springer-Verlag, New York, 2006, 209–225 | MR | Zbl

[9] V. Alexandrov, “The Dehn invariants of the Bricard octahedra”, J. Geom., 99:1–2 (2010), 1–13 | DOI | MR | Zbl

[10] D. V. Alekseevskii, E. B. Vinberg, A. S. Solodovnikov, “Geometriya prostranstv postoyannoi krivizny”, Geometriya – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 29, VINITI, M., 1988, 5–146 | MR | Zbl