Mots-clés : flexible suspension
@article{SM_2013_204_8_a5,
author = {D. A. Slutskii},
title = {A necessary flexibility condition for a~nondegenerate suspension in {Lobachevsky} 3-space},
journal = {Sbornik. Mathematics},
pages = {1195--1214},
year = {2013},
volume = {204},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a5/}
}
D. A. Slutskii. A necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1195-1214. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a5/
[1] R. Bricard, “Mémoire sur la théorie de l'octaèdre articulé”, Journ. de Math. (5), 3 (1897), 113–148 | Zbl
[2] H. Lebesgue, “Octaèdres articulés de Bricard”, Enseignement Math. (2), 13:3 (1967), 175–185 | MR | Zbl
[3] R. Connelly, “An attack on rigidity”, Bull. Amer. Math. Soc., 81:1 (1975), 566–569 | DOI | MR | MR | Zbl | Zbl
[4] S. N. Mikhalev, “Some necessary metric conditions for flexibility of suspensions”, Moscow Univ. Math. Bull., 56:3 (2001), 14–20 | MR | Zbl
[5] J. W. Anderson, Hyperbolic geometry, Springer Undergrad. Math. Ser., Springer-Verlag, London, 2005 | MR | Zbl
[6] R. Benedetti, C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl
[7] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984 | MR | Zbl
[8] H. Stachel, “Flexible octahedra in the hyperbolic space”, Non-Euclidean geometries (Budapest, Hungary, 2002), Math. Appl. (N. Y.), 581, Springer-Verlag, New York, 2006, 209–225 | MR | Zbl
[9] V. Alexandrov, “The Dehn invariants of the Bricard octahedra”, J. Geom., 99:1–2 (2010), 1–13 | DOI | MR | Zbl
[10] D. V. Alekseevskii, E. B. Vinberg, A. S. Solodovnikov, “Geometriya prostranstv postoyannoi krivizny”, Geometriya – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 29, VINITI, M., 1988, 5–146 | MR | Zbl