A necessary flexibility condition for a~nondegenerate suspension in Lobachevsky 3-space
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1195-1214
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that some combination of the lengths of all edges of the equator of a flexible suspension in Lobachevsky 3-space is equal to zero (each length is taken with a ‘plus’ or ‘minus’ sign in this combination).
Bibliography: 10 titles.
Keywords:
flexible polyhedron, hyperbolic space, Connelly method, equator of a suspension.
Mots-clés : flexible suspension
Mots-clés : flexible suspension
@article{SM_2013_204_8_a5,
author = {D. A. Slutskii},
title = {A necessary flexibility condition for a~nondegenerate suspension in {Lobachevsky} 3-space},
journal = {Sbornik. Mathematics},
pages = {1195--1214},
publisher = {mathdoc},
volume = {204},
number = {8},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a5/}
}
D. A. Slutskii. A necessary flexibility condition for a~nondegenerate suspension in Lobachevsky 3-space. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1195-1214. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a5/