On the boundary of the group of transformations leaving a~measure quasi-invariant
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1161-1194

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a Lebesgue measure space. We interpret measures on $A\times A\times \mathbb R^\times$ as ‘maps’ from $A$ to $A$, which ‘spread’ $A$ along itself; their Radon-Nikodym derivatives are also spread. We discuss the basic properties of the semigroup of such maps and the action of this semigroup on the spaces $L^p(A)$. Bibliography: 26 titles.
Keywords: Markov operator, characteristic function
Mots-clés : Lebesgue space, polymorphism, spaces $L^p$.
@article{SM_2013_204_8_a4,
     author = {Yu. A. Neretin},
     title = {On the boundary of the group of transformations leaving a~measure quasi-invariant},
     journal = {Sbornik. Mathematics},
     pages = {1161--1194},
     publisher = {mathdoc},
     volume = {204},
     number = {8},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On the boundary of the group of transformations leaving a~measure quasi-invariant
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1161
EP  - 1194
VL  - 204
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/
LA  - en
ID  - SM_2013_204_8_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On the boundary of the group of transformations leaving a~measure quasi-invariant
%J Sbornik. Mathematics
%D 2013
%P 1161-1194
%V 204
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/
%G en
%F SM_2013_204_8_a4
Yu. A. Neretin. On the boundary of the group of transformations leaving a~measure quasi-invariant. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1161-1194. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/