On the boundary of the group of transformations leaving a measure quasi-invariant
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1161-1194
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a Lebesgue measure space. We interpret measures on $A\times A\times \mathbb R^\times$ as ‘maps’ from $A$ to $A$, which ‘spread’ $A$ along itself; their Radon-Nikodym derivatives are also spread. We discuss the basic properties of the semigroup of such maps and the action of this semigroup on the spaces $L^p(A)$. Bibliography: 26 titles.
Keywords: Markov operator, characteristic function
Mots-clés : Lebesgue space, polymorphism, spaces $L^p$.
@article{SM_2013_204_8_a4,
     author = {Yu. A. Neretin},
     title = {On the boundary of the group of transformations leaving a~measure quasi-invariant},
     journal = {Sbornik. Mathematics},
     pages = {1161--1194},
     year = {2013},
     volume = {204},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On the boundary of the group of transformations leaving a measure quasi-invariant
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1161
EP  - 1194
VL  - 204
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/
LA  - en
ID  - SM_2013_204_8_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On the boundary of the group of transformations leaving a measure quasi-invariant
%J Sbornik. Mathematics
%D 2013
%P 1161-1194
%V 204
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/
%G en
%F SM_2013_204_8_a4
Yu. A. Neretin. On the boundary of the group of transformations leaving a measure quasi-invariant. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1161-1194. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/

[1] U. Krengel, Ergodic theorems, de Gruyter Stud. Math., 6, de Gruyter, Berlin, 1985 | MR | Zbl

[2] A. M. Vershik, “Many-valued measure-preserving mappings (polymorphisms) and Markovian operators”, J. Soviet Math., 23:3 (1983), 2243–2266 | DOI | MR | Zbl | Zbl

[3] D. J. Rudolph, Fundamentals of measurable dynamics. Ergodic theory on Lebesgue spaces, Oxford Sci. Publ., The Clarendon Press, New York, 1990 | MR | Zbl

[4] E. Glasner, Ergodic theory via joinings, Math. Surveys Monogr., 101, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[5] Y. Brenier, “Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations”, Comm. Pure Appl. Math., 52:4 (1999), 411–452 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] Yu. A. Neretin, “Categories of bistochastic measures, and representations of some infinite-dimensional groups”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 197–219 | DOI | MR | Zbl | Zbl

[7] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Math. Soc. Monogr. (N.S.), 16, Clarendon Press, Oxford, 1996 | MR | Zbl

[8] Yu. A. Neretin, “Notes on affine isometric actions of discrete groups”, Analysis on infinite-dimensional Lie groups and algebras (Marseille, 1997), World Sci. Publ, River Edge, NJ, 1998, 274–320 | MR | Zbl

[9] L. Hörmander, The analysis of linear partial differential operators, vol. 1, Grundlehren Math. Wiss., 256–257, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[10] R. E. Howe, C. C. Moore, “Asymptotic properties of unitary representations”, J. Funct. Anal., 32:1 (1979), 72–96 | DOI | MR | Zbl

[11] G. I. Olshanski, “On semigroups related to infinite-dimensional groups”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, R.I., 1991, 67–101 | MR | Zbl

[12] Yu. A. Neretin, “Fractional diffusions and quasi-invariant actions of infinite-dimensional groups”, Proc. Steklov Inst. Math., 217 (1997), 126–173 | MR | Zbl

[13] Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114:2 (2002), 239–266 | DOI | MR | Zbl

[14] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl

[15] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math. (2), 161:3 (2005), 1319–1422 | DOI | MR | Zbl

[16] Izv. Math., 77:5 (2013), 941–953 | DOI | DOI | MR | Zbl

[17] Yu. A. Neretin, The space $L^2$ on semi-infinite Grassmannian over finite field, arXiv: 1209.3477

[18] Yu. A. Neretin, “Spreading maps (polymorphisms), symmetries of poisson processes, and matching summation”, J. Math. Sci. (N. Y.), 126:2 (2005), 1077–1094 | DOI | MR | Zbl

[19] Yu. A. Neretin, “Symmetries of Gaussian measures and operator colligations”, J. Funct. Anal., 263:3 (2012), 782–802 | DOI | MR | Zbl

[20] V. A. Rohlin, “On the fundamental ideas of measure theory”, Amer. Math. Soc. Translation, 1952, no. 71 | MR | MR | Zbl

[21] N. F. G. Martin, J. W. England, Mathematical theory of entropy, Encyclopedia Math. Appl., 12, Addison-Wesley, Reading, MA, 1981 | MR | MR | Zbl | Zbl

[22] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl

[23] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961 | MR | MR | MR | Zbl | Zbl

[24] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York–London, 1972 | MR | MR | Zbl

[25] M. Loève, Probability theory, Van Nostrand, Toronto–New York–London, 1960 | MR | MR | Zbl

[26] Yu. V. Linnik, Decomposition of probability distributions, Dover Publ., New York, 1971 | MR | MR | Zbl | Zbl