On the boundary of the group of transformations leaving a~measure quasi-invariant
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1161-1194
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a Lebesgue measure space. We interpret measures on $A\times A\times \mathbb R^\times$ as ‘maps’ from $A$ to $A$, which ‘spread’ $A$ along itself; their Radon-Nikodym derivatives are also spread. We discuss the basic properties of the semigroup of such maps and the action of this semigroup on the spaces $L^p(A)$.
Bibliography: 26 titles.
Keywords:
Markov operator, characteristic function
Mots-clés : Lebesgue space, polymorphism, spaces $L^p$.
Mots-clés : Lebesgue space, polymorphism, spaces $L^p$.
@article{SM_2013_204_8_a4,
author = {Yu. A. Neretin},
title = {On the boundary of the group of transformations leaving a~measure quasi-invariant},
journal = {Sbornik. Mathematics},
pages = {1161--1194},
publisher = {mathdoc},
volume = {204},
number = {8},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/}
}
Yu. A. Neretin. On the boundary of the group of transformations leaving a~measure quasi-invariant. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1161-1194. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a4/