@article{SM_2013_204_8_a2,
author = {A. A. Dovgoshey and E. A. Petrov},
title = {Subdominant pseudoultrametric on graphs},
journal = {Sbornik. Mathematics},
pages = {1131--1151},
year = {2013},
volume = {204},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a2/}
}
A. A. Dovgoshey; E. A. Petrov. Subdominant pseudoultrametric on graphs. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1131-1151. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a2/
[1] J. A. Bondy, U. S. R. Murty, Graph Theory, Grad. Texts in Math., 244, Springer-Verlag, New York, 2008 | MR | Zbl
[2] O. Dovgoshey, O. Martio, M. Vuorinen, Metrization of weighted graphs, Reports in Math. University of Helsinki, 516, 2011
[3] O. Dovgoshey, O. Martio, “Blow up of balls and coverings in metric spaces”, Manuscripta Math., 127:1 (2008), 89–120 | DOI | MR | Zbl
[4] N. Jardine, R. Sibson, Mathematical taxonomy. Part II, Willey, London, 1971 | MR | Zbl
[5] J. M. Bayod, J. Martiner-Maurica, “Subdominant ultrametrics”, Proc. Amer. Math. Soc., 109:3 (1990), 829–834 | DOI | MR | Zbl
[6] J. P. J. Jardine, N. Jardine, R. Sibson, “The structure and construction of taxonomic hierarchies”, Math. Bioscienes, 1:2 (1967), 173–179 | DOI | Zbl
[7] R. Rammal, J. C. Angles d'Auriac, B. Doucot, “On the degree of ultrametricity”, J. Physique, 46 (1985), 945–952 | DOI | MR
[8] R. Rammal, G. Toulouse, M. A. Virasoro, “Ultrametricity for physicist”, Rev. Modern Phys., 58:3 (1986), 765–788 | DOI | MR
[9] D. Marcu, “A study on metrics and statistical analysis”, Studia Univ. Babes-Bolyai Math., 49:3 (2004), 43–74 | MR | Zbl
[10] O. Dovgoshey, D. Dordovskyi, “Ultrametricity and metric betweenness in tangent spaces to metric spaces”, p-Adic Numbers Ultrametric Anal. Appl., 2:2 (2010), 100–113 | DOI | MR | Zbl
[11] A. J. Lemin, “On ultrametrization of general metric spaces”, Proc. Amer. Math. Soc., 131:3 (2003), 979–989 | DOI | MR | Zbl
[12] D. Dordovskyi, O. Dovgoshey, E. Petrov, “Diameter and diametrical pairs of points in ultrametric spaces”, p-Adic Numbers Ultrametric Anal. Appl., 3:4 (2011), 253–262 | DOI | MR | Zbl
[13] S. B. Nadler, jr., Continuum theory. An introduction, Monogr. Textbooks Pure Appl. Math., 158, Marcel Dekker, New York, 1992 | MR | Zbl
[14] A. G. O'Farrel, “When uniformly-continuous implies bounded”, Irish Math. Soc. Bull., 53 (2004), 53–56 | MR | Zbl