Subdominant pseudoultrametric on graphs
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1131-1151

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(G,w)$ be a weighted graph. We find necessary and sufficient conditions under which the weight $w\colon E(G)\to \mathbb{R}^+$ can be extended to a pseudoultrametric on $V(G)$, and establish a criterion for the uniqueness of such an extension. We demonstrate that $(G,w)$ is a complete $k$-partite graph, for $k\geqslant 2$, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with $w$. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.
Keywords: weighted graph, infinite graph, ultrametric space, shortest path metric, complete $k$-partite graph.
@article{SM_2013_204_8_a2,
     author = {A. A. Dovgoshey and E. A. Petrov},
     title = {Subdominant pseudoultrametric on graphs},
     journal = {Sbornik. Mathematics},
     pages = {1131--1151},
     publisher = {mathdoc},
     volume = {204},
     number = {8},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a2/}
}
TY  - JOUR
AU  - A. A. Dovgoshey
AU  - E. A. Petrov
TI  - Subdominant pseudoultrametric on graphs
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1131
EP  - 1151
VL  - 204
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a2/
LA  - en
ID  - SM_2013_204_8_a2
ER  - 
%0 Journal Article
%A A. A. Dovgoshey
%A E. A. Petrov
%T Subdominant pseudoultrametric on graphs
%J Sbornik. Mathematics
%D 2013
%P 1131-1151
%V 204
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a2/
%G en
%F SM_2013_204_8_a2
A. A. Dovgoshey; E. A. Petrov. Subdominant pseudoultrametric on graphs. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1131-1151. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a2/