On the structure of self-affine convex bodies
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1122-1130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the structure of convex bodies in $\mathbb R^d$ that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for $d = 2$ by Richter in 2011. In the present paper we disprove the conjecture for all $d \geqslant 3$ and derive a detailed description of self-affine bodies in $\mathbb R^3$. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.
Keywords: self-affine set, convex polyhedron.
Mots-clés : partition
@article{SM_2013_204_8_a1,
     author = {A. S. Voynov},
     title = {On the structure of self-affine convex bodies},
     journal = {Sbornik. Mathematics},
     pages = {1122--1130},
     year = {2013},
     volume = {204},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/}
}
TY  - JOUR
AU  - A. S. Voynov
TI  - On the structure of self-affine convex bodies
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1122
EP  - 1130
VL  - 204
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/
LA  - en
ID  - SM_2013_204_8_a1
ER  - 
%0 Journal Article
%A A. S. Voynov
%T On the structure of self-affine convex bodies
%J Sbornik. Mathematics
%D 2013
%P 1122-1130
%V 204
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/
%G en
%F SM_2013_204_8_a1
A. S. Voynov. On the structure of self-affine convex bodies. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1122-1130. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/

[1] A. S. Voynov, “Self-affine polytopes. Applications to functional equations and matrix theory”, Sb. Math., 202:10 (2011), 1413–1439 | DOI | DOI | MR | Zbl

[2] E. Hertel, C. Richter, “Self-affine convex polygons”, J. Geom, 98:1–2 (2010), 79–89 | DOI | MR | Zbl

[3] A. Voynov, “A counterexample to Valette's conjecture”, Proc. Steklov Inst. Math., 275 (2011), 290–292 | DOI | MR

[4] C. Richter, “Self-affine convex discs are polygons”, Beitr. Algebra Geom., 53:1 (2011), 219–224 | DOI | MR | Zbl

[5] Contributions to geometry, Proceedings of the Geometry Symposium (Siegen, 1978), eds. J. Tölke, J. M. Wills, Birkhäuser, Basel, 1979 | MR | Zbl

[6] H. T. Croft, K. J. Falconer, R. K. Guy, Unsolved problems in geometry, Problem Books in Math., Springer-Verlag, New York, 1991 | MR | Zbl

[7] R. Q. Jia, “Subdivision schemes in $L_p$ spaces”, Adv. Comput. Math., 3:4 (1995), 309–341 | DOI | MR | Zbl

[8] K.-S. Lau, J. Wang, “Characterization of $L_p$-solutions for the two-scale dilation equations”, SIAM J. Math. Anal., 26:4 (1995), 1018–1046 | DOI | MR | Zbl

[9] V. Yu. Protasov, “Extremal $L_p$-norms of linear operators and self-similar functions”, Linear Algebra Appl., 428:10 (2008), 2339–2356 | DOI | MR | Zbl

[10] J. E. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl