Mots-clés : partition
@article{SM_2013_204_8_a1,
author = {A. S. Voynov},
title = {On the structure of self-affine convex bodies},
journal = {Sbornik. Mathematics},
pages = {1122--1130},
year = {2013},
volume = {204},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/}
}
A. S. Voynov. On the structure of self-affine convex bodies. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1122-1130. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/
[1] A. S. Voynov, “Self-affine polytopes. Applications to functional equations and matrix theory”, Sb. Math., 202:10 (2011), 1413–1439 | DOI | DOI | MR | Zbl
[2] E. Hertel, C. Richter, “Self-affine convex polygons”, J. Geom, 98:1–2 (2010), 79–89 | DOI | MR | Zbl
[3] A. Voynov, “A counterexample to Valette's conjecture”, Proc. Steklov Inst. Math., 275 (2011), 290–292 | DOI | MR
[4] C. Richter, “Self-affine convex discs are polygons”, Beitr. Algebra Geom., 53:1 (2011), 219–224 | DOI | MR | Zbl
[5] Contributions to geometry, Proceedings of the Geometry Symposium (Siegen, 1978), eds. J. Tölke, J. M. Wills, Birkhäuser, Basel, 1979 | MR | Zbl
[6] H. T. Croft, K. J. Falconer, R. K. Guy, Unsolved problems in geometry, Problem Books in Math., Springer-Verlag, New York, 1991 | MR | Zbl
[7] R. Q. Jia, “Subdivision schemes in $L_p$ spaces”, Adv. Comput. Math., 3:4 (1995), 309–341 | DOI | MR | Zbl
[8] K.-S. Lau, J. Wang, “Characterization of $L_p$-solutions for the two-scale dilation equations”, SIAM J. Math. Anal., 26:4 (1995), 1018–1046 | DOI | MR | Zbl
[9] V. Yu. Protasov, “Extremal $L_p$-norms of linear operators and self-similar functions”, Linear Algebra Appl., 428:10 (2008), 2339–2356 | DOI | MR | Zbl
[10] J. E. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl