On the structure of self-affine convex bodies
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1122-1130

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of convex bodies in $\mathbb R^d$ that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for $d = 2$ by Richter in 2011. In the present paper we disprove the conjecture for all $d \geqslant 3$ and derive a detailed description of self-affine bodies in $\mathbb R^3$. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.
Keywords: self-affine set, convex polyhedron.
Mots-clés : partition
@article{SM_2013_204_8_a1,
     author = {A. S. Voynov},
     title = {On the structure of self-affine convex bodies},
     journal = {Sbornik. Mathematics},
     pages = {1122--1130},
     publisher = {mathdoc},
     volume = {204},
     number = {8},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/}
}
TY  - JOUR
AU  - A. S. Voynov
TI  - On the structure of self-affine convex bodies
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1122
EP  - 1130
VL  - 204
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/
LA  - en
ID  - SM_2013_204_8_a1
ER  - 
%0 Journal Article
%A A. S. Voynov
%T On the structure of self-affine convex bodies
%J Sbornik. Mathematics
%D 2013
%P 1122-1130
%V 204
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/
%G en
%F SM_2013_204_8_a1
A. S. Voynov. On the structure of self-affine convex bodies. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1122-1130. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a1/