$m$-Accretive extensions of a~sectorial operator
Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1085-1121

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of all the maximal accretive extensions and their resolvents is given for a densely defined closed sectorial operator in terms of abstract boundary conditions. These results are applied to parametrize all the $m$-accretive extensions of a symmetric operator in a planar model of one-centre point interaction. Bibliography: 40 titles.
Keywords: sectorial operator, accretive operator, linear relation, Friedrichs extension, boundary triplet.
@article{SM_2013_204_8_a0,
     author = {Yu. M. Arlinskii and A. B. Popov},
     title = {$m${-Accretive} extensions of a~sectorial operator},
     journal = {Sbornik. Mathematics},
     pages = {1085--1121},
     publisher = {mathdoc},
     volume = {204},
     number = {8},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a0/}
}
TY  - JOUR
AU  - Yu. M. Arlinskii
AU  - A. B. Popov
TI  - $m$-Accretive extensions of a~sectorial operator
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1085
EP  - 1121
VL  - 204
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_8_a0/
LA  - en
ID  - SM_2013_204_8_a0
ER  - 
%0 Journal Article
%A Yu. M. Arlinskii
%A A. B. Popov
%T $m$-Accretive extensions of a~sectorial operator
%J Sbornik. Mathematics
%D 2013
%P 1085-1121
%V 204
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_8_a0/
%G en
%F SM_2013_204_8_a0
Yu. M. Arlinskii; A. B. Popov. $m$-Accretive extensions of a~sectorial operator. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1085-1121. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a0/