@article{SM_2013_204_8_a0,
author = {Yu. M. Arlinskii and A. B. Popov},
title = {$m${-Accretive} extensions of a~sectorial operator},
journal = {Sbornik. Mathematics},
pages = {1085--1121},
year = {2013},
volume = {204},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_8_a0/}
}
Yu. M. Arlinskii; A. B. Popov. $m$-Accretive extensions of a sectorial operator. Sbornik. Mathematics, Tome 204 (2013) no. 8, pp. 1085-1121. http://geodesic.mathdoc.fr/item/SM_2013_204_8_a0/
[1] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl
[2] R. S. Phillips, “Dissipative operators and hyperbolic systems of partial differential equations”, Trans. Amer. Math. Soc., 90 (1959), 193–254 | DOI | MR | Zbl
[3] R. S. Phillips, “On dissipative operators”, Lectures in differential equations, 3, 1969, 65–113 | Zbl
[4] D. V. Evans, I. Knowles, “On the extension problem for accretive differential operators”, J. Funct. Anal., 63:3 (1985), 276–298 | DOI | MR | Zbl
[5] D. V. Evans, I. Knowles, “On the extension problem for singular accretive differential operators”, J. Differential Equations, 63:2 (1986), 264–288 | DOI | MR | Zbl
[6] O. Ya. Milo, O. G. Storozh, “Ob obschem vide maksimalno akkretivnogo rasshireniya polozhitelno opredelennogo operatora”, Dokl. AN USSR. Ser. A, 1991, no. 6, 19–22 | MR
[7] O. Ya. Milo, O. G. Storozh, Maksimalno akkretivnye rasshireniya polozhitelno opredelennogo operatora s konechnym indeksom defekta, Dep. v GNTB Ukrainy, 2139, Lvov. un-t, Lvov, 1993
[8] M. G. Crandall, “Norm preserving extensions of linear transformations on Hilbert spaces”, Proc. Amer. Math. Soc., 21:2 (1969), 335–340 | DOI | MR | Zbl
[9] M. G. Krein, “Teoriya samosopryazhennykh rasshirenii poluogranichennykh ermitovykh operatorov i ee prilozheniya. I”, Matem. sb., 20(62):3 (1947), 431–495 | MR | Zbl
[10] M. G. Krein, “Teoriya samosopryazhennykh rasshirenii poluogranichennykh ermitovykh operatorov i ee prilozheniya. II”, Matem. sb., 21(63):3 (1947), 365–404 | MR | Zbl
[11] M. Sh. Birman, “K teorii samosopryazhennykh rasshirenii polozhitelno opredelennykh operatorov”, Matem. sb., 38(80):4 (1956), 431–450 | MR | Zbl
[12] M. I. Vishik, “On general boundary problems for elliptic differential equations”, Amer. Math. Soc., Transl. II Ser., 24 (1963), 107–172 | MR | Zbl | Zbl
[13] J. W. Calkin, “Abstract symmetric boundary conditions”, Trans. Amer. Math. Soc., 45:3 (1939), 369–442 | DOI | MR | Zbl
[14] V. M. Bruk, “On a class of boundary value problems with spectral parameter in the boundary condition”, Math. USSR-Sb., 29:2 (1976), 186–192 | DOI | MR | Zbl | Zbl
[15] A. N. Kochubei, “Extensions of symmetric operators and symmetric binary relations”, Math. Notes, 17:1 (1975), 25–28 | DOI | MR | Zbl
[16] A. N. Kochubei, “On extensions of a positive-definite symmetric operator”, Amer. Math. Soc., Transl. II Ser., 124 (1984), 139–142 | MR | Zbl | Zbl
[17] V. A. Mikhailets, “Spektpy opepatopov i gpanichnye zadachi”, Spektpalnyi analiz diffepentsialnykh opepatopov, In-t matematiki, Kiev, 1980, 106–131 | MR | Zbl
[18] V. E. Lyantse, O. G. Stopozh, Metody teopii neogpanichennykh opepatopov, Naukova dumka, Kiev, 1983 | MR
[19] V. I. Gorbachuk, M. L. Gorbachuk, Boundary value problems for operator differential equations, Math. Appl. (Soviet Ser.), 48, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl
[20] V. A. Derkach, M. M. Malamud, “Generalized resolvents and the boundary value problems for Hermitian operators with gaps”, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl
[21] V. A. Derkach, M. M. Malamud, “The extension theory of Hermitian operators and the moment problem”, J. Math. Sci., 73:2 (1995), 141–242 | DOI | MR | Zbl
[22] Yu. M. Arlinskii, “Positive spaces of boundary values and sectorial extensions of a nonnegative symmetric operator”, Ukrainian Math. J., 40:1 (1988), 5–10 | DOI | MR | Zbl | Zbl
[23] V.Ȧ. Derkach, M. M. Malamud, É. P. Tsekanovskii, “Sectorial extensions of a positive operator and the characteristic function”, Ukrainian Math. J., 41:2 (1989), 136–142 | DOI | MR | Zbl | Zbl
[24] O. Ya. Mil'yo, O. G. Storozh, “Maximal accretiveness and maximal nonnegativeness conditions for a class of finite-dimensional perturbations of a positive definite operator”, Mat. Stud., 12:1 (1999), 90–100 | MR | Zbl
[25] G. M. Pipa, O. G. Storozh, “Accretive perturbations of some proper extensions of a positive definite operator”, Mat. Stud., 25:2 (2006), 181–190 | MR | Zbl
[26] Yu. Arlinskii, E. Tsekanovskii, “The von Neumann problem for nonnegative symmetric operators”, Integral Equations Operator Theory, 51:3 (2005), 319–356 | DOI | MR | Zbl
[27] Yu. Arlinskiǐ, Yu. Kovalev, E. Tsekanovskiǐ, “Accretive and sectorial extensions of nonnegative symmetric operators”, Complex Anal. Oper. Theory, 6:3 (2012), 677–718 | DOI | MR
[28] É. R. Tsekanovskii, “Non-self-adjoint accretive extensions of positive operators and theorems of Friedrichs–Krein–Phillips”, Funct. Anal. Appl., 14:2 (1980), 156–157 | DOI | MR | Zbl | Zbl
[29] Yu. M. Arlinskii, “On proper accretive extensions of positive linear relations”, Ukrainian Math. J., 47:6 (1995), 831–840 | DOI | MR | Zbl
[30] Yu. M. Arlinskii, “Maximal sectorial extensions and closed forms associated with them”, Ukrainian Math. J., 48:6 (1996), 809–827 | DOI | MR | Zbl | Zbl
[31] Y. M. Arlinskii, “Extremal extensions of sectorial linear relations”, Mat. Stud., 7:1 (1997), 81–96 | MR | Zbl
[32] Yu. M. Arlinskiĭ, “On $m$-accretive extensions and restrictions”, Methods Funct. Anal. Topology, 4:3 (1998), 1–26 | MR | Zbl
[33] Yu. M. Arlinskii, “On functions connected with sectorial operators and their extensions”, Integral Equations Operator Theory, 33:2 (1999), 125–152 | DOI | MR | Zbl
[34] Yu. Arlinskii, “Abstract boundary conditions for maximal sectorial extensions of sectorial operators”, Math. Nachr., 209 (2000), 5–36 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[35] T. Ando, K. Nishio, “Positive selfadjoint extensions of positive symmetric operators”, Tohoku Math. J. (2), 22:1 (1970), 65–75 | DOI | MR | Zbl
[36] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts Monogr. Phys., Springer-Verlag, New York, 1988 | MR | MR | Zbl
[37] F. Gesztesy, N. Kalton, K. A. Makarov, E. Tsekanovskii, “Some applications of operator-valued Herglotz functions”, Operator theory, system theory and related topics (Beer-Sheva/Rehovot, Israel, 1997), Oper. Theory Adv. Appl., 123, Birkhäuser, Basel, 2001, 271–321 | MR | Zbl
[38] V. Adamyan, “Non-negative perturbations of non-negative self-adjoint operators”, Methods Funct. Anal. Topology, 13:2 (2007), 103–109 | MR | Zbl
[39] Yu. Arlinskii, S. Belyi, E. Tsekanovskii, Conservative realizations of Herglotz–Nevanlinna functions, Oper. Theory Adv. Appl., 217, Springer-Verlag, Basel, 2011 | MR | Zbl
[40] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, Washington, 1964 | MR | MR | Zbl | Zbl