@article{SM_2013_204_7_a5,
author = {A. Ya. Helemskii},
title = {Metric freeness and projectivity for classical and quantum normed modules},
journal = {Sbornik. Mathematics},
pages = {1056--1083},
year = {2013},
volume = {204},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_7_a5/}
}
A. Ya. Helemskii. Metric freeness and projectivity for classical and quantum normed modules. Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1056-1083. http://geodesic.mathdoc.fr/item/SM_2013_204_7_a5/
[1] A. Ya. Helemskii, Quantum functional analysis. Non-coordinate approach, Univ. Lecture Ser., 56, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl
[2] A. Ya. Helemskii, “Extreme flatness of normed modules and Arveson–Wittstock type theorems”, J. Operator Theory, 64:1 (2010), 171–188 | MR | Zbl
[3] G. Wittstock, “Injectivity of the module tensor product of semi-Ruan modules”, J. Operator Theory, 65:1 (2011), 87–113 | MR | Zbl
[4] A. J. Helemskiǐ, “On the homological dimension of normed modules over Banach algebras”, Math. USSR-Sb., 10:3 (1970), 399–411 | DOI | MR | Zbl | Zbl
[5] A. Ya. Khelemskii, The homology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl
[6] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologiya, Nauka, M., 1989 | MR | Zbl
[7] V. Runde, Lectures on amenability, Lecture Notes in Math., 1774, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[8] A. Pietsch, History of Banach spaces and linear operators, Birkhäuser, Basel, 2007 | MR | Zbl
[9] A. Grothendieck, “Une caractérisation vectorielle-métrique des espaces $L^1$”, Canad. J. Math., 7 (1955), 552–561 | DOI | MR | Zbl
[10] A. Ya. Helemskii, “Extreme version of projectivity for normed modules over sequence algebras”, Canad. J. Math., 65:3 (2013), 559–574 | DOI | MR | Zbl
[11] A. Ya. Helemskii, “Metric version of flatness and Hahn–Banach type theorems for normed modules over sequence algebras”, Studia Math., 206:2 (2011), 135–160 | DOI | MR | Zbl
[12] D. P. Blecher, “The standard dual of an operator space”, Pacific J. Math., 153:1 (1992), 15–30 | DOI | MR | Zbl
[13] S. MacLane, Homology, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl | Zbl
[14] Yu. V. Selivanov, “Projective Fréchet modules with the approximation property”, Russian Math. Surveys, 50:1 (1995), 211–213 | DOI | MR | Zbl
[15] E. V. Gusarov, Obschekategornaya skhema dlya topologicheski svobodnykh normirovannykh modulei, Preprint, 2012
[16] J. Cigler, V. Losert, P. Michor, Banach modules and functors on categories of Banach spaces, Lecture Notes in Pure and Appl. Math., 46, Marcel Dekker, New York, 1979 | MR | Zbl
[17] A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 223, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl
[18] S. MacLane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York, 1998 | MR | Zbl
[19] C. Faith, Algebra: rings, modules and categories, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR | MR | Zbl
[20] Z. Semadeni, “Projectivity, injectivity and duality”, Rozprawy Mat., 35 (1963), 1–47 | MR | Zbl
[21] G. Köthe, “Hebbare lokalkonvexe Räume”, Math. Ann., 165:3 (1966), 181–195 | DOI | MR | Zbl
[22] Z. Semadeni, Banach spaces of continuous functions, v. 1, PWN, Warsaw, 1971 | MR | Zbl
[23] N. Groenbaek, Lifting proplems for normed spaces, Preprint, 2011
[24] E. G. Effros, Z.-J. Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Clarendon Press, Oxford, 2000 | MR | Zbl
[25] V. I. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[26] J. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[27] D. P. Blecher, C. Le Merdy, Operator algebras and their modules – an operator space approach, London Math. Soc. Monogr. (N.S.), 30, Clarendon Press, Oxford, 2004 | MR | Zbl
[28] D. P. Blecher, V. I. Paulsen, “Tensor products of operator spaces”, J. Funct. Anal., 99:2 (1991), 262–292 | DOI | MR | Zbl