Metric freeness and projectivity for classical and quantum normed modules
Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1056-1083 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In functional analysis, there are several diverse approaches to the notion of projective module. We show that a certain general categorical scheme contains all basic versions as special cases. In this scheme, the notion of free object comes to the foreground, and, in the best categories, projective objects are precisely retracts of free ones. We are especially interested in the so-called metric version of projectivity and characterize the metrically free classical and quantum (= operator) normed modules. Informally speaking, so-called extremal projectivity, which was known earlier, is interpreted as a kind of ‘asymptotical metric projectivity’. In addition, we answer the following specific question in the geometry of normed spaces: what is the structure of metrically projective modules in the simplest case of normed spaces? We prove that metrically projective normed spaces are precisely the subspaces of $l_1(M)$ (where $M$ is a set) that are denoted by $l_1^0(M)$ and consist of finitely supported functions. Thus, in this case, projectivity coincides with freeness. Bibliography: 28 titles.
Keywords: quantum module, metric projectivity, freeness, rigging, asymptotic structure.
@article{SM_2013_204_7_a5,
     author = {A. Ya. Helemskii},
     title = {Metric freeness and projectivity for classical and quantum normed modules},
     journal = {Sbornik. Mathematics},
     pages = {1056--1083},
     year = {2013},
     volume = {204},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_7_a5/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - Metric freeness and projectivity for classical and quantum normed modules
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1056
EP  - 1083
VL  - 204
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_7_a5/
LA  - en
ID  - SM_2013_204_7_a5
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T Metric freeness and projectivity for classical and quantum normed modules
%J Sbornik. Mathematics
%D 2013
%P 1056-1083
%V 204
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2013_204_7_a5/
%G en
%F SM_2013_204_7_a5
A. Ya. Helemskii. Metric freeness and projectivity for classical and quantum normed modules. Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1056-1083. http://geodesic.mathdoc.fr/item/SM_2013_204_7_a5/

[1] A. Ya. Helemskii, Quantum functional analysis. Non-coordinate approach, Univ. Lecture Ser., 56, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl

[2] A. Ya. Helemskii, “Extreme flatness of normed modules and Arveson–Wittstock type theorems”, J. Operator Theory, 64:1 (2010), 171–188 | MR | Zbl

[3] G. Wittstock, “Injectivity of the module tensor product of semi-Ruan modules”, J. Operator Theory, 65:1 (2011), 87–113 | MR | Zbl

[4] A. J. Helemskiǐ, “On the homological dimension of normed modules over Banach algebras”, Math. USSR-Sb., 10:3 (1970), 399–411 | DOI | MR | Zbl | Zbl

[5] A. Ya. Khelemskii, The homology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl

[6] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologiya, Nauka, M., 1989 | MR | Zbl

[7] V. Runde, Lectures on amenability, Lecture Notes in Math., 1774, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[8] A. Pietsch, History of Banach spaces and linear operators, Birkhäuser, Basel, 2007 | MR | Zbl

[9] A. Grothendieck, “Une caractérisation vectorielle-métrique des espaces $L^1$”, Canad. J. Math., 7 (1955), 552–561 | DOI | MR | Zbl

[10] A. Ya. Helemskii, “Extreme version of projectivity for normed modules over sequence algebras”, Canad. J. Math., 65:3 (2013), 559–574 | DOI | MR | Zbl

[11] A. Ya. Helemskii, “Metric version of flatness and Hahn–Banach type theorems for normed modules over sequence algebras”, Studia Math., 206:2 (2011), 135–160 | DOI | MR | Zbl

[12] D. P. Blecher, “The standard dual of an operator space”, Pacific J. Math., 153:1 (1992), 15–30 | DOI | MR | Zbl

[13] S. MacLane, Homology, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl | Zbl

[14] Yu. V. Selivanov, “Projective Fréchet modules with the approximation property”, Russian Math. Surveys, 50:1 (1995), 211–213 | DOI | MR | Zbl

[15] E. V. Gusarov, Obschekategornaya skhema dlya topologicheski svobodnykh normirovannykh modulei, Preprint, 2012

[16] J. Cigler, V. Losert, P. Michor, Banach modules and functors on categories of Banach spaces, Lecture Notes in Pure and Appl. Math., 46, Marcel Dekker, New York, 1979 | MR | Zbl

[17] A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 223, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl

[18] S. MacLane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York, 1998 | MR | Zbl

[19] C. Faith, Algebra: rings, modules and categories, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR | MR | Zbl

[20] Z. Semadeni, “Projectivity, injectivity and duality”, Rozprawy Mat., 35 (1963), 1–47 | MR | Zbl

[21] G. Köthe, “Hebbare lokalkonvexe Räume”, Math. Ann., 165:3 (1966), 181–195 | DOI | MR | Zbl

[22] Z. Semadeni, Banach spaces of continuous functions, v. 1, PWN, Warsaw, 1971 | MR | Zbl

[23] N. Groenbaek, Lifting proplems for normed spaces, Preprint, 2011

[24] E. G. Effros, Z.-J. Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Clarendon Press, Oxford, 2000 | MR | Zbl

[25] V. I. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[26] J. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[27] D. P. Blecher, C. Le Merdy, Operator algebras and their modules – an operator space approach, London Math. Soc. Monogr. (N.S.), 30, Clarendon Press, Oxford, 2004 | MR | Zbl

[28] D. P. Blecher, V. I. Paulsen, “Tensor products of operator spaces”, J. Funct. Anal., 99:2 (1991), 262–292 | DOI | MR | Zbl