Approximation of M\"untz-Sz\'asz type in weighted spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1028-1055
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper looks at whether a system of exponentials $\exp(-\lambda_nt)$, $\operatorname{Re}\lambda_n>0$, is complete in various function spaces on the half-line $\mathbb R_+$. Wide classes of Banach spaces $E$ and $F$ of functions on $\mathbb R_+$ are described such that this system is complete in $E$ and $F$ simultaneously. A test is established to determine when this system is complete in the weighted spaces $C_0$ and $L^p$ with weight $(1+t)^\alpha$ on $\mathbb R_+$, for $\alpha0$ and $\alpha-1$, respectively.
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Müntz and Szász theorems, complete system of exponentials, spaces with combined norm, weighted spaces
Mots-clés : Laplace transform.
                    
                  
                
                
                Mots-clés : Laplace transform.
@article{SM_2013_204_7_a4,
     author = {A. M. Sedletskii},
     title = {Approximation of {M\"untz-Sz\'asz} type in weighted spaces},
     journal = {Sbornik. Mathematics},
     pages = {1028--1055},
     publisher = {mathdoc},
     volume = {204},
     number = {7},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_7_a4/}
}
                      
                      
                    A. M. Sedletskii. Approximation of M\"untz-Sz\'asz type in weighted spaces. Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1028-1055. http://geodesic.mathdoc.fr/item/SM_2013_204_7_a4/
