Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1003-1027
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper describes a new algorithm for constructing lattice cubature formulae with bounded boundary layer
$$
\int_{\Omega}f(x)\, dx\approx h^n\sum_{\substack{k\in\mathbb{Z}^n \\ \rho(hk,\Omega)\leqslant Ch^{\gamma}}} c_k(h) f(hk),
$$
where
$$
\gamma\frac12, \qquad c_k(h)=1, \quad\text{if \ }\rho(hk,\mathbb R^n\setminus\Omega)\geqslant Ch^{\gamma}.
$$
These formulae are unsaturated (in the sense of Babenko) both with respect to the order and in regard to the property of asymptotic optimality on $W_2^m$-spaces, $m\in(n/2,\infty)$. Most of the results obtained apply also to $W_2^\mu(\mathbb{R}^n)$-spaces with a hypoelliptic multiplier of smoothness $\mu$.
Bibliography: 6 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
optimization, unsaturated algorithm.
Mots-clés : cubature formulae
                    
                  
                
                
                Mots-clés : cubature formulae
@article{SM_2013_204_7_a3,
     author = {M. D. Ramazanov},
     title = {Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer},
     journal = {Sbornik. Mathematics},
     pages = {1003--1027},
     publisher = {mathdoc},
     volume = {204},
     number = {7},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_7_a3/}
}
                      
                      
                    M. D. Ramazanov. Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer. Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1003-1027. http://geodesic.mathdoc.fr/item/SM_2013_204_7_a3/
