Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer
Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1003-1027 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper describes a new algorithm for constructing lattice cubature formulae with bounded boundary layer $$ \int_{\Omega}f(x)\, dx\approx h^n\sum_{\substack{k\in\mathbb{Z}^n \\ \rho(hk,\Omega)\leqslant Ch^{\gamma}}} c_k(h) f(hk), $$ where $$ \gamma<\frac12, \qquad c_k(h)=1, \quad\text{if \ }\rho(hk,\mathbb R^n\setminus\Omega)\geqslant Ch^{\gamma}. $$ These formulae are unsaturated (in the sense of Babenko) both with respect to the order and in regard to the property of asymptotic optimality on $W_2^m$-spaces, $m\in(n/2,\infty)$. Most of the results obtained apply also to $W_2^\mu(\mathbb{R}^n)$-spaces with a hypoelliptic multiplier of smoothness $\mu$. Bibliography: 6 titles.
Keywords: optimization, unsaturated algorithm.
Mots-clés : cubature formulae
@article{SM_2013_204_7_a3,
     author = {M. D. Ramazanov},
     title = {Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer},
     journal = {Sbornik. Mathematics},
     pages = {1003--1027},
     year = {2013},
     volume = {204},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_7_a3/}
}
TY  - JOUR
AU  - M. D. Ramazanov
TI  - Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1003
EP  - 1027
VL  - 204
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_7_a3/
LA  - en
ID  - SM_2013_204_7_a3
ER  - 
%0 Journal Article
%A M. D. Ramazanov
%T Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer
%J Sbornik. Mathematics
%D 2013
%P 1003-1027
%V 204
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2013_204_7_a3/
%G en
%F SM_2013_204_7_a3
M. D. Ramazanov. Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer. Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 1003-1027. http://geodesic.mathdoc.fr/item/SM_2013_204_7_a3/

[1] S. L. Sobolev, Cubature formulas and modern analysis: An introduction, Gordon and Breach, Montreux, 1992 | MR | MR | Zbl | Zbl

[2] S. L. Sobolev, V. L. Vaskevich, The theory of cubature formulas, Math. Appl., 415, Kluwer Acad. Publ., Dordrecht, 1997 | MR | MR | Zbl | Zbl

[3] M. D. Ramazanov, “To the $L_p$-theory of Sobolev formulas”, Siberian Adv. Math., 9:1 (1999), 99–125 | MR | Zbl

[4] M. D. Ramazanov, Teoriya reshetchatykh kubaturnykh formul s ogranichennym pogranichnym sloem, IMVTs UNTs RAN, Ufa, 2009

[5] K. I. Babenko, Osnovy chislennogo analiza, RKhD, M.–Izhevsk, 2002 | MR | Zbl

[6] V. N. Belykh, “On the best approximation properties of $C^\infty$-smooth functions on an interval of the real axis (to the phenomenon of unsaturated numerical methods)”, Siberian Math. J., 46:3 (2005), 373–385 | DOI | MR | Zbl