A boundary-value problem in weighted H\"older spaces for elliptic equations which degenerate at the boundary of the domain
Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 958-978

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic boundary-value problem for second-order equations with nonnegative characteristic form is investigated in the situation when there is a weak degeneracy on the boundary of the domain. A priori estimates are obtained for solutions and the problem is proved to be solvable in some weighted Hölder spaces. Bibliography: 18 titles.
Keywords: degenerate elliptic equation, weighted Hölder spaces, a priori estimate.
@article{SM_2013_204_7_a1,
     author = {B. V. Bazalii and S. P. Degtyarev},
     title = {A boundary-value problem in weighted {H\"older} spaces for elliptic equations which degenerate at the boundary of the domain},
     journal = {Sbornik. Mathematics},
     pages = {958--978},
     publisher = {mathdoc},
     volume = {204},
     number = {7},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_7_a1/}
}
TY  - JOUR
AU  - B. V. Bazalii
AU  - S. P. Degtyarev
TI  - A boundary-value problem in weighted H\"older spaces for elliptic equations which degenerate at the boundary of the domain
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 958
EP  - 978
VL  - 204
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_7_a1/
LA  - en
ID  - SM_2013_204_7_a1
ER  - 
%0 Journal Article
%A B. V. Bazalii
%A S. P. Degtyarev
%T A boundary-value problem in weighted H\"older spaces for elliptic equations which degenerate at the boundary of the domain
%J Sbornik. Mathematics
%D 2013
%P 958-978
%V 204
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_7_a1/
%G en
%F SM_2013_204_7_a1
B. V. Bazalii; S. P. Degtyarev. A boundary-value problem in weighted H\"older spaces for elliptic equations which degenerate at the boundary of the domain. Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 958-978. http://geodesic.mathdoc.fr/item/SM_2013_204_7_a1/