@article{SM_2013_204_7_a0,
author = {S. V. Astashkin and E. M. Semenov},
title = {Spaces defined by the {Paley} function},
journal = {Sbornik. Mathematics},
pages = {937--957},
year = {2013},
volume = {204},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_7_a0/}
}
S. V. Astashkin; E. M. Semenov. Spaces defined by the Paley function. Sbornik. Mathematics, Tome 204 (2013) no. 7, pp. 937-957. http://geodesic.mathdoc.fr/item/SM_2013_204_7_a0/
[1] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II. Function spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl
[2] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982 | MR | MR | Zbl | Zbl
[3] Ya. B. Rutitskii, “O nekotorykh klassakh izmerimykh funktsii”, UMN, 20:4 (1965), 205–208
[4] S. V. Astashkin, “Rademacher functions in symmetric spaces”, J. Math. Sci. (N. Y.), 169:6 (2010), 725–886 | DOI | MR | Zbl
[5] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl
[6] P. F. Müller, Isomorphisms between $H^1$ spaces, IMPAN Monogr. Mat. (N. S.), 66, Birkhäuser, Basel, 2005 | MR | Zbl
[7] B. I. Golubov, “Series with respect to the Haar system”, J. Soviet Math., 1:6 (1973), 704–726 | DOI | MR | Zbl | Zbl
[8] I. Novikov, E. Semenov, Haar series and linear operators, Math. Appl., 367, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl
[9] S. V. Astashkin, E. M. Semenov, “Haar series and spaces determined by the Paley function”, Dokl. Math., 86:1 (2012), 539–541 | DOI | Zbl
[10] C. Franchetti, E. M. Semenov, “A Hilbert space characterization among function spaces”, Anal. Math., 21:2 (1995), 85–93 | DOI | MR | Zbl
[11] W. B. Johnson, G. Schechtman, “Martingale inequalities in rearrangement invariant function spaces”, Israel J. Math., 64:3 (1988), 267–275 | DOI | MR | Zbl
[12] E. M. Semenov, “$\mathrm{RUC}$-basis properties of the Haar system”, Dokl. Math., 53:3 (2008), 397–398 | MR | Zbl
[13] P. Billard, S. Kwapień, A. Pelczyński, Ch. Samuel, “Biorthogonal systems of random unconditional convergence in Banach spaces”, Texas Functional Analysis Seminar 1985–1986 (Austin, TX, 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 13–35 | MR | Zbl
[14] S. J. Szarek, “On the best constants in the Khinchin inequality”, Studia Math., 58:2 (1976), 197–208 | MR | Zbl
[15] M. Kikuchi, “On the Davis inequality in Banach function spaces”, Math. Nachr., 281:5 (2008), 697–709 | DOI | MR | Zbl
[16] V. A. Rodin, E. M. Semenov, “Complementability of the subspace generated by the Rademacher system in a symmetric space”, Funct. Anal. Appl., 13:2 (1979), 150–151 | DOI | MR | Zbl | Zbl
[17] Y. Raynaud, “Complemented Hilbertian subspaces in rearrangement invariant function spaces”, Illinois J. Math., 39:2 (1995), 212–250 | MR | Zbl
[18] E. V. Tokarev, “Complemented subspaces of symmetric function spaces”, Math. Notes, 32:4 (1982), 726–728 | DOI | MR | Zbl
[19] C. Bennett, R. A. DeVore, R. Sharpley, “Weak–$L^\infty$ and $\mathrm{BMO}$”, Ann. of Math. (2), 113:3 (1981), 601–611 | DOI | MR | Zbl
[20] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Boston, MA, 1988 | MR | Zbl
[21] A. Korenovskii, Mean oscillations and equimeasurable rearrangements of functions, Lect. Notes Unione Mat. Ital., 4, Springer-Verlag, Berlin, 2007 | MR | Zbl
[22] S. V. Astashkin, M. Leibov, L. Maligranda, “Rademacher functions in $\mathrm{BMO}$”, Studia Math., 205:1 (2011), 83–100 | DOI | MR | Zbl
[23] A. Zygmund, Trigonometric series, v. I, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl
[24] V. A. Rodin, E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl
[25] Yu. A. Brudnyi, N. Ya. Kruglyak, Interpolation functors and interpolation spaces, v. 1, North-Holland Math. Library, 47, Amsterdam, North-Holland, 1991 | MR | Zbl
[26] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl
[27] E. M. Nikishin, “On a property of sums of independent variables”, Math. Notes, 16:5 (1974), 1015–1017 | DOI | MR | Zbl