Littlewood polynomials and applications of them in the spectral theory of dynamical systems
Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 910-935 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we establish the existence of character sums on the real line $\mathbb R$ that are $\varepsilon$-flat on any given compact subset $K\subset \mathbb R \setminus \{0\}$ with respect to the metric in the space $L^1(K)$. A consequence of this analytic result is an affirmative answer to Banach's conjecture on the existence of a dynamical system with a simple Lebesgue spectrum in the class of actions of the group $\mathbb R$. Bibliography: 25 titles.
Keywords: Littlewood polynomials, van der Corput's method, Riesz products, rank-one flows, Banach's problem.
@article{SM_2013_204_6_a4,
     author = {A. A. Prikhod'ko},
     title = {Littlewood polynomials and applications of them in the spectral theory of dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {910--935},
     year = {2013},
     volume = {204},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/}
}
TY  - JOUR
AU  - A. A. Prikhod'ko
TI  - Littlewood polynomials and applications of them in the spectral theory of dynamical systems
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 910
EP  - 935
VL  - 204
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/
LA  - en
ID  - SM_2013_204_6_a4
ER  - 
%0 Journal Article
%A A. A. Prikhod'ko
%T Littlewood polynomials and applications of them in the spectral theory of dynamical systems
%J Sbornik. Mathematics
%D 2013
%P 910-935
%V 204
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/
%G en
%F SM_2013_204_6_a4
A. A. Prikhod'ko. Littlewood polynomials and applications of them in the spectral theory of dynamical systems. Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 910-935. http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/

[1] S. Ferenczi, “Systems of finite rank”, Colloq. Math., 73:1 (1997), 35–65 | MR | Zbl

[2] R. V. Chacon, “A geometric construction of measure preserving transformations”, Proc. 5th Berkeley Sympos. Math. Statist. and Probability (Berkeley, CA, 1965–1966), v. II, Contributions to probability theory, Part 2, Univ. of California Press, Berkeley, 1967, 335–360 | MR | Zbl

[3] D. S. Ornstein, “On the root problem in ergodic theory”, Proc. 6th Berkeley Sympos. Math. Statist. and Probability (Berkeley, CA, 1970–1971), v. II, Probability theory, Univ. of California Press, Berkeley, 1972, 347–356 | MR | Zbl

[4] A. A. Kirillov, “Dynamical systems, factors and representations of groups”, Russian Math. Surveys, 22:5 (1967), 63–75 | DOI | MR | Zbl

[5] S. Ulam, Nereshennye matematicheskie zadachi, Nauka, M., 1964 | Zbl

[6] J. E. Littlewood, “On polynomials $\sum^n \pm z^m$, $\sum^n e^{\alpha_n i} z^m$, $z=e^{\theta i}$”, J. London Math. Soc., 41 (1966), 367–376 | DOI | MR | Zbl

[7] G. H. Hardy, J. E. Littlewood, “Some problems of diophantine approximation: a remarkable trigonometrical series”, Proc. Nat. Acad. Sci. USA, 10:2 (1916), 583–586 | Zbl

[8] P. Borwein, T. Erdélyi, G. Kós, “Littlewood-type problems on $[0,1]$”, Proc. London Math. Soc. (3), 79:1 (1999), 22–46 | MR | Zbl

[9] T. Erdelyi, “Polynomials with Littlewood-type coefficient constraints”, Approximation theory X. Abstract and classical analysis (St. Louis, MO, USA, 2001), Innov. Appl. Math., Vanderbilt University Press, Nashville, TN, 2002, 153–196 | MR | Zbl

[10] E. Bombieri, J. Bourgain, “On Kahane's ultraflat polynomials”, J. Eur. Math. Soc. (JEMS), 11:3 (2009), 627–703 | MR | Zbl

[11] J.-P. Kahane, “Sur les polynomes à coefficients unimodulaires”, Bull. London Math. Soc., 12 (1980), 321–342 | MR | Zbl

[12] J. S. Byrnes, “On polynomials with coefficients of modulus one”, Bull. London Math. Soc., 9:2 (1977), 171–176 | DOI | MR | Zbl

[13] T. W. Körner, “On a polynomial of Byrnes”, Bull. London Math. Soc., 12:3 (1980), 219–224 | DOI | MR | Zbl

[14] E. H. El Abdalaoui, F. Parreau, A. A. Prikhod'ko, “A new class of Ornstein transformations with singular spectrum”, Ann. Inst. H. Poincaré Probab. Statist., 42, no. 6, 2006, 671–681 | DOI | MR | Zbl

[15] J. Bourgain, “On the spectral type of Ornstein's class one transformations”, Israel J. Math., 84:1–2 (1993), 53–63 | DOI | MR | Zbl

[16] I. Klemes, K. Reinhold, “Rank one transformations with singular spectral type”, Israel J. Math., 98:1 (1997), 1–14 | DOI | MR | Zbl

[17] T. R. Adams, “Smorodinsky's conjecture on rank-one mixing”, Proc. Amer. Math. Soc., 126:3 (1998), 739–744 | DOI | MR | Zbl

[18] V. V. Ryzhikov, “On the spectral and mixing properties of rank-one constructions in ergodic theory”, Dokl. Math., 74:1 (2006), 545–547 | DOI | MR | Zbl

[19] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[20] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951 | MR | Zbl

[21] H.-Q. Liu, “On a fundamental result in van der Corput's method of estimating exponential sums”, Acta Arith., 90:4 (1999), 357–370 | MR | Zbl

[22] S. H. Min, Methods in Number Theory, v. 2, Science Press, Beijing, 1981 | MR | Zbl

[23] A. Scardicchio, “Classical and quantum dynamics of a particle constrained on a circle”, Phys. Lett. A, 300:1 (2002), 7–17 | DOI | MR | Zbl

[24] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1989 | MR | MR | Zbl | Zbl

[25] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer-Verlag, Berlin, 1980 | DOI | MR | MR | Zbl | Zbl