Littlewood polynomials and applications of them in the spectral theory of dynamical systems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 910-935
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we establish the existence of character sums on the real line $\mathbb R$ that are $\varepsilon$-flat on any given compact subset $K\subset \mathbb R \setminus \{0\}$ with respect to the metric in the space $L^1(K)$. A consequence of this analytic result is an affirmative answer to Banach's conjecture on the existence of a dynamical system with a simple Lebesgue spectrum in the class of actions of the group $\mathbb R$.
Bibliography: 25 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Littlewood polynomials, van der Corput's method, Riesz products, rank-one flows, Banach's problem.
                    
                    
                    
                  
                
                
                @article{SM_2013_204_6_a4,
     author = {A. A. Prikhod'ko},
     title = {Littlewood polynomials and applications of them in the spectral theory of dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {910--935},
     publisher = {mathdoc},
     volume = {204},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/}
}
                      
                      
                    TY - JOUR AU - A. A. Prikhod'ko TI - Littlewood polynomials and applications of them in the spectral theory of dynamical systems JO - Sbornik. Mathematics PY - 2013 SP - 910 EP - 935 VL - 204 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/ LA - en ID - SM_2013_204_6_a4 ER -
A. A. Prikhod'ko. Littlewood polynomials and applications of them in the spectral theory of dynamical systems. Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 910-935. http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/
