Littlewood polynomials and applications of them in the spectral theory of dynamical systems
Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 910-935

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we establish the existence of character sums on the real line $\mathbb R$ that are $\varepsilon$-flat on any given compact subset $K\subset \mathbb R \setminus \{0\}$ with respect to the metric in the space $L^1(K)$. A consequence of this analytic result is an affirmative answer to Banach's conjecture on the existence of a dynamical system with a simple Lebesgue spectrum in the class of actions of the group $\mathbb R$. Bibliography: 25 titles.
Keywords: Littlewood polynomials, van der Corput's method, Riesz products, rank-one flows, Banach's problem.
@article{SM_2013_204_6_a4,
     author = {A. A. Prikhod'ko},
     title = {Littlewood polynomials and applications of them in the spectral theory of dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {910--935},
     publisher = {mathdoc},
     volume = {204},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/}
}
TY  - JOUR
AU  - A. A. Prikhod'ko
TI  - Littlewood polynomials and applications of them in the spectral theory of dynamical systems
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 910
EP  - 935
VL  - 204
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/
LA  - en
ID  - SM_2013_204_6_a4
ER  - 
%0 Journal Article
%A A. A. Prikhod'ko
%T Littlewood polynomials and applications of them in the spectral theory of dynamical systems
%J Sbornik. Mathematics
%D 2013
%P 910-935
%V 204
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/
%G en
%F SM_2013_204_6_a4
A. A. Prikhod'ko. Littlewood polynomials and applications of them in the spectral theory of dynamical systems. Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 910-935. http://geodesic.mathdoc.fr/item/SM_2013_204_6_a4/