Mots-clés : invariant torus, bifurcation
@article{SM_2013_204_6_a2,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {Invariant tori for a~class of nonlinear evolution equations},
journal = {Sbornik. Mathematics},
pages = {824--868},
year = {2013},
volume = {204},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_6_a2/}
}
A. Yu. Kolesov; N. Kh. Rozov. Invariant tori for a class of nonlinear evolution equations. Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 824-868. http://geodesic.mathdoc.fr/item/SM_2013_204_6_a2/
[1] A. A. Witt, “Autoschwingungen in kontinuierlich verteilten Systemen”, Phys. Z. Sowjetunion, 5 (1934), 777–795 | Zbl | Zbl
[2] V. V. Migulin, V. I. Medvedev, E. R. Mustel, V. N. Parygin, Basic theory of oscillations, Mir, Moscow, 1983 | MR
[3] P. S. Landa, Nelineinye kolebaniya i volny, Nauka, M., 1997 | MR
[4] A. Yu. Kolesov, N. Kh. Rozov, “Asymptotic theory of oscillations in Vitt systems”, J. Math. Sci. (New York), 105:1 (2001), 1697–1737 | DOI | MR | Zbl
[5] Yu. S. Kolesov, “Zadacha parazit–khozyain”, Dinamika biologicheskikh populyatsii, Gork. un-t, Gorkii, 1984, 28–34
[6] Yu. S. Kolesov, “Ob odnoi bifurkatsionnoi teoreme v teorii avtokolebanii raspredelennykh sistem”, Differents. uravneniya, 21:10 (1985), 1709–1713 | Zbl
[7] Yu. S. Kolesov, “Method of quasinormal forms in the problem of steady-state conditions for parabolic systems with small diffusion”, Ukrainian Math. J., 39:1 (1987), 21–26 | DOI | MR | Zbl
[8] A. B. Vasil'eva, S. A. Kashchenko, Yu. S. Kolesov, N. Kh. Rozov, “Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion”, Math. USSR-Sb., 58:2 (1987), 491–503 | DOI | MR | Zbl
[9] A. Yu. Kolesov, Yu. S. Kolesov, “Bifurcation of self-oscillations of the singularly perturbed wave equation”, Soviet Math. Dokl., 42:3 (1991), 754–756 | MR | Zbl
[10] Yu. S. Kolesov, “Asymptotics and stability of non-linear parametric oscillations of a singularly perturbed telegraph equation”, Sb. Math., 186:10 (1995), 1445–1459 | DOI | MR | Zbl
[11] A. Yu. Kolesov, “Stability of the autooscillations of the telegraph equation, bifurcating from an equilibrium state”, Math. Notes, 51:2 (1992), 147–151 | DOI | MR | Zbl
[12] A. Yu. Kolesov, “Parametric oscillations of solutions to the telegraph equation with moderately small diffusion”, Siberian Math. J., 33:6 (1992), 1011–1019 | DOI | MR | Zbl
[13] V. F. Kambulov, A. Yu. Kolesov, N. Kh. Rozov, “Existence and stability of rapidly oscillating cycles for the nonlinear telegraph equation”, Comput. Math. Math. Phys., 38:8 (1998), 1233–1246 | MR | Zbl
[14] V. F. Kambulov, A. Yu. Kolesov, N. Kh. Rozov, “Bifurcation of spatially inhomogeneous cycles for a nonlinear wave equation with small diffusion”, Trans. Moscow Math. Soc., 1998, 179–200 | MR | Zbl
[15] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations”, Proc. Steklov Inst. Math., 222 (1998), 1–189 | MR | Zbl | Zbl
[16] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[17] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005 | MR
[18] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The buffer property in resonance systems of non-linear hyperbolic equations”, Russian Math. Surveys, 55:2 (2000), 297–321 | DOI | DOI | MR | Zbl
[19] A. Yu. Kolesov, N. Kh. Rozov, “The buffer phenomenon in an RCLG oscillator: Theoretical analysis and experimental results”, Proc. Steklov Inst. Math., 233 (2001), 143–196 | MR | Zbl
[20] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Buffer phenomenon in nonlinear physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168 | MR | Zbl
[21] I. Segal, “Non-linear semi-groups”, Ann. of Math., 78:2 (1963), 339–364 | DOI | MR | Zbl
[22] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, Providence, RI, Amer. Math. Soc., 1957 | MR | MR | Zbl
[23] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, London Math. Soc. Lecture Note Ser., 41, Cambridge Univ. Press, Cambridge, 1981 | MR | MR | Zbl | Zbl
[24] A. Yu. Kolesov, N. Kh. Rozov, “Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation”, Sb. Math., 193:1 (2002), 93–118 | DOI | DOI | MR | Zbl
[25] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl
[26] A. Yu. Kolesov, V. V. Maiorov, “A new method of investigating the stability of solutions of linear differential equations with almost-periodic coefficients that are almost constant”, Differential Equations, 10 (1976), 1363–1370 | MR | Zbl | Zbl
[27] G. F. Votruba, L. F. Boron (eds.), Functional analysis, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl
[28] J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976 | MR | MR | Zbl | Zbl