Invariant tori for a class of nonlinear evolution equations
Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 824-868 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper looks at quite a wide class of nonlinear evolution equations in a Banach space, including the typical boundary value problems for the main wave equations in mathematical physics (the telegraph equation, the equation of a vibrating beam, various equations from the elastic stability and so on). For this class of equations a unified approach to the bifurcation of invariant tori of arbitrary finite dimension is put forward. Namely, the problem of the birth of such tori from the zero equilibrium is investigated under the assumption that in the stability problem for this equilibrium the situation arises close to an infinite-dimensional degeneracy. Bibliography: 28 titles.
Keywords: nonlinear wave equation, stability, boundary value problem.
Mots-clés : invariant torus, bifurcation
@article{SM_2013_204_6_a2,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Invariant tori for a~class of nonlinear evolution equations},
     journal = {Sbornik. Mathematics},
     pages = {824--868},
     year = {2013},
     volume = {204},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_6_a2/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Invariant tori for a class of nonlinear evolution equations
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 824
EP  - 868
VL  - 204
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_6_a2/
LA  - en
ID  - SM_2013_204_6_a2
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Invariant tori for a class of nonlinear evolution equations
%J Sbornik. Mathematics
%D 2013
%P 824-868
%V 204
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2013_204_6_a2/
%G en
%F SM_2013_204_6_a2
A. Yu. Kolesov; N. Kh. Rozov. Invariant tori for a class of nonlinear evolution equations. Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 824-868. http://geodesic.mathdoc.fr/item/SM_2013_204_6_a2/

[1] A. A. Witt, “Autoschwingungen in kontinuierlich verteilten Systemen”, Phys. Z. Sowjetunion, 5 (1934), 777–795 | Zbl | Zbl

[2] V. V. Migulin, V. I. Medvedev, E. R. Mustel, V. N. Parygin, Basic theory of oscillations, Mir, Moscow, 1983 | MR

[3] P. S. Landa, Nelineinye kolebaniya i volny, Nauka, M., 1997 | MR

[4] A. Yu. Kolesov, N. Kh. Rozov, “Asymptotic theory of oscillations in Vitt systems”, J. Math. Sci. (New York), 105:1 (2001), 1697–1737 | DOI | MR | Zbl

[5] Yu. S. Kolesov, “Zadacha parazit–khozyain”, Dinamika biologicheskikh populyatsii, Gork. un-t, Gorkii, 1984, 28–34

[6] Yu. S. Kolesov, “Ob odnoi bifurkatsionnoi teoreme v teorii avtokolebanii raspredelennykh sistem”, Differents. uravneniya, 21:10 (1985), 1709–1713 | Zbl

[7] Yu. S. Kolesov, “Method of quasinormal forms in the problem of steady-state conditions for parabolic systems with small diffusion”, Ukrainian Math. J., 39:1 (1987), 21–26 | DOI | MR | Zbl

[8] A. B. Vasil'eva, S. A. Kashchenko, Yu. S. Kolesov, N. Kh. Rozov, “Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion”, Math. USSR-Sb., 58:2 (1987), 491–503 | DOI | MR | Zbl

[9] A. Yu. Kolesov, Yu. S. Kolesov, “Bifurcation of self-oscillations of the singularly perturbed wave equation”, Soviet Math. Dokl., 42:3 (1991), 754–756 | MR | Zbl

[10] Yu. S. Kolesov, “Asymptotics and stability of non-linear parametric oscillations of a singularly perturbed telegraph equation”, Sb. Math., 186:10 (1995), 1445–1459 | DOI | MR | Zbl

[11] A. Yu. Kolesov, “Stability of the autooscillations of the telegraph equation, bifurcating from an equilibrium state”, Math. Notes, 51:2 (1992), 147–151 | DOI | MR | Zbl

[12] A. Yu. Kolesov, “Parametric oscillations of solutions to the telegraph equation with moderately small diffusion”, Siberian Math. J., 33:6 (1992), 1011–1019 | DOI | MR | Zbl

[13] V. F. Kambulov, A. Yu. Kolesov, N. Kh. Rozov, “Existence and stability of rapidly oscillating cycles for the nonlinear telegraph equation”, Comput. Math. Math. Phys., 38:8 (1998), 1233–1246 | MR | Zbl

[14] V. F. Kambulov, A. Yu. Kolesov, N. Kh. Rozov, “Bifurcation of spatially inhomogeneous cycles for a nonlinear wave equation with small diffusion”, Trans. Moscow Math. Soc., 1998, 179–200 | MR | Zbl

[15] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations”, Proc. Steklov Inst. Math., 222 (1998), 1–189 | MR | Zbl | Zbl

[16] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[17] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005 | MR

[18] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The buffer property in resonance systems of non-linear hyperbolic equations”, Russian Math. Surveys, 55:2 (2000), 297–321 | DOI | DOI | MR | Zbl

[19] A. Yu. Kolesov, N. Kh. Rozov, “The buffer phenomenon in an RCLG oscillator: Theoretical analysis and experimental results”, Proc. Steklov Inst. Math., 233 (2001), 143–196 | MR | Zbl

[20] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Buffer phenomenon in nonlinear physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168 | MR | Zbl

[21] I. Segal, “Non-linear semi-groups”, Ann. of Math., 78:2 (1963), 339–364 | DOI | MR | Zbl

[22] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, Providence, RI, Amer. Math. Soc., 1957 | MR | MR | Zbl

[23] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, London Math. Soc. Lecture Note Ser., 41, Cambridge Univ. Press, Cambridge, 1981 | MR | MR | Zbl | Zbl

[24] A. Yu. Kolesov, N. Kh. Rozov, “Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation”, Sb. Math., 193:1 (2002), 93–118 | DOI | DOI | MR | Zbl

[25] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[26] A. Yu. Kolesov, V. V. Maiorov, “A new method of investigating the stability of solutions of linear differential equations with almost-periodic coefficients that are almost constant”, Differential Equations, 10 (1976), 1363–1370 | MR | Zbl | Zbl

[27] G. F. Votruba, L. F. Boron (eds.), Functional analysis, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl

[28] J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976 | MR | MR | Zbl | Zbl