@article{SM_2013_204_6_a0,
author = {S. V. Vostokov},
title = {Shafarevich's paper {{\textquotedblleft}A} general reciprocity law{\textquotedblright}},
journal = {Sbornik. Mathematics},
pages = {781--800},
year = {2013},
volume = {204},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_6_a0/}
}
S. V. Vostokov. Shafarevich's paper “A general reciprocity law”. Sbornik. Mathematics, Tome 204 (2013) no. 6, pp. 781-800. http://geodesic.mathdoc.fr/item/SM_2013_204_6_a0/
[1] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil II: Reziprozitätsgesetz, Erganzungsband, 6, Leipzig, Teubner, 1930 | MR | Zbl
[2] E. Artin, H. Hasse, “Die beiden Ergänzungssätze zum reziprozitätsgesetz der $l^n$-ten potenzreste im körper der $l^n$-ten Einheitswurzeln Einheitswurzeln”, Abh. Math. Sem. Univ. Hamburg, 6:1 (1928), 146–162 | DOI | Zbl
[3] I. R. Shafarevich, “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | MR | Zbl
[4] S. V. Vostokov, “Explicit form of the law of reciprocity”, Math. USSR-Izv., 13:3 (1979), 557–588 | DOI | MR | Zbl | Zbl
[5] S. V. Vostokov, “Explicit construction of class field theory for a multidimensional local field”, Math. USSR-Izv., 26:2 (1986), 263–287 | DOI | MR | Zbl
[6] H. Brückner, Hilbertsymbole zum Exponenten $p^n$ und Pfaffische Formen, preprint, Hamburg, 1979
[7] H. Hasse, “Die Gruppe der $p^n$-primären Zahlen für einen Primteiler $\mathfrak p$ von $p$”, J. Reine Angew. Math., 176 (1936), 174–183
[8] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions: a constructive approach, Transl. Math. Monogr., 121, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[9] T. B. Belyaeva, S. V. Vostokov, “The Hilbert symbol in a complete multidimensional field. I”, J. Math. Sci. (N. Y.), 120:4 (2004), 1483–1500 | DOI | MR | Zbl
[10] S. V. Vostokov, “On the law of reciprocity in an algebraic number field”, Proc. Steklov Inst. Math., 148 (1980), 75–79 | MR | Zbl
[11] S. V. Vostokov, “Hilbert symbol in a discrete valuated field”, J. Soviet Math., 19:1 (1982), 1006–1019 | DOI | MR | Zbl | Zbl
[12] K. Hensel, “Die multiplikative Darstellungder algebraischen Zahlen für den Bereicheines beliebigen Primteilers”, J. Reine Angew. Math., 136 (1916), 174–183
[13] H. Hasse, Zahlentheorie, Akadenie-Verlag, Berlin, 1963 | MR | Zbl
[14] S. V. Vostokov, I. B. Zhukov, I. B. Fesenko, “On the theory of higher-dimensional local fields. Methods and constructions”, Leningrad Math. J., 2:4 (1991), 775–800 | MR | Zbl | Zbl
[15] A. N. Parshin, “Local class field theory”, Proc. Steklov Inst. Math., 165 (1985), 157–185 | MR | Zbl | Zbl
[16] A. N. Parshin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl | Zbl
[17] S. V. Vostokov, “The pairing on $K$-groups in fields of valuation of rank $n$”, Proceedings of the St. Petersburg Mathematical Society, v. 3, Amer. Math. Soc., Providence, RI, 1995, 111–148 | MR | Zbl
[18] A. N. Parshin, “Polya klassov i algebraicheskaya $K$-teoriya”, UMN, 30:1 (1975), 253–254 | MR | Zbl
[19] K. Kato, “A generalization of local class field theory by using $K$-groups. I”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26:2 (1979), 303–376 ; “II”, 27:3, 603–683 | MR | Zbl | MR | Zbl
[20] B. M. Bekker, “Abelian extensions of a complete discrete valuation field of finite heigh”, St. Petersburg Math. J., 3:6 (1992), 1271–1279 | MR | Zbl | Zbl
[21] I. B. Fesenko, “Abelian local $p$-class field theory”, Math. Ann., 301:1 (1995), 561–586 | DOI | MR | Zbl
[22] K. F. Lai, S. V. Vostokov, “The Kneser relation and the Hilbert pairing in multidimensional local field”, Math. Nachr., 280:16 (2007), 1780–1797 | DOI | MR | Zbl
[23] E. Witt, “Schiefkörper über diskret bewerteten Körpern”, J. Reine Angew. Math., 176 (1936), 153–156 | Zbl
[24] S. V. Vostokov, “Hilbert pairing on a complete high-dimensional field”, Proc. Steklov Inst. Math., 208 (1995), 72–83 | MR | Zbl
[25] V. Abrashkin, R. Jenni, “The field-of-norms functor and the Hilbert symbol for higher local fields”, J. Théor. Nombres Bordeaux, 24:1 (2012), 1–39 | DOI | MR | Zbl